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PREFACE 

This volume contains contributions presented at an International 

Symposium on Conformal Groups and Conformal Structures held in August 

1985 at the Arnold Sommerfeld Institute for Mathematical Physics in 

Clausthal. We hope that the wide range of subjects treated here will 

give a picture of the present status of the importance of the conformal 

groups, other related groups and associated mathematical structures 

(such as superconformal algebra, Kac-Moody algebras), and spin struc- 

tures. Symmetry, with group theory and algebras as its mathematical 

model, has always played a crucial and significant role in the develop- 

ment of physical theories. One of the prime reasons for the interest in 

the conformal group is that it is perhaps the most important of the 

larger groups containing the Poincar~ group. It opens the door to appli- 

cations far beyond the standard kinematical framework provided by the 

local symmetries of flat space-time. 

It is stimulating to recognise the progress which has occurred in the 

last 15 years by comparing these proceedings with those of a similar con- 

ference held in 1970 (A.O. Barut, W.E. Brittin: De Sitter and Conformal 

Groups and Their Applications, Colorado University Press 1971). The 

emphasis ihas changed and numerous new fields have appeared which are 

mathematically and physically associated with the conformal group. The 

great interest shown in this conference and the material presented in 

this vol~ne indicates that the field centred around conformal symmetry 

is very much alive and active. 

The material is organised into six chapters: 

I. Symmetries and Dynamics 

If. Classical and Quantum Field Theory 

III. Conformal Structures 

IV. Conformal Spinors 

V. Lie Groups, -Algebras and Superalgebras 

VI. Infinite-Dimensional Lie Algebras 

The papers range from direct physical appiications~ (e.g.p. Magnollay 

and Dj. ~ija~ki) to the presentation of mathematical methods and results 

(e.g.V.G. Kac) with likely future influence on particle phyiscs. We 

have also included articles with a bias towards fundamental questions 

using syn~setry tO reinforce parts of the foundations of physics and of 

space-time structure (e.g.C.F.v. Weizs~cker and also P. Budinich). 



IV 

Some of the developments during xecent years, and hence some of the 

contributions, have utilized conformal symmetry in combination with e.g. 

differential geometric and algebraic structures, as in string theory 

(e.g.Y. Ne'eman). There are also research reports based on applications 

of groups related to the conformal group (e.g. SL(4,R)). The extended 

lectures by I.T. Todorov on "Infinite Dimensional Lie Algebras in Con- 

formal QFT Models" aims to give new results combined with a review as 

an introduction to an important and fast-growing subject. Furthermore, 

some articles present reviews in a new and updated context. We have also 

inCluded the material of some of the invited speakers who did not have 

the opportunity to present it at the conference. 

To give this volume special value to postgraduate students and to 

physicists and mathematicians who want to enter the field, we asked for 

contributions which contain some introductory and review sections. 
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FROM HEISENBERG ALGEBRA TO 

CONFORMAL DYNAMICAL GROUP 

A. O. Barut 

Department of Physics 

Campus Box 390 

University of Colorado 

Boulder, CO. 80309-0390 

ABSTRACT 

The basic algebraic structures in the quantum theory of the electron, from 

Heisenberg algebra, kinematic algebra, Galilean, and Poincar~ groups, to the 

internal and external conformal algebras are outlined. The universal role of the 

conformal dynamical group from electron, H-atom, hadrons, to periodic table is 

discussed. 

I .  I n t r o d u c t i o n  

The p o s t u l a t e s  of  q u a n t u m  t h e o r y  can  be e x p r e s s e d  mos t  c o n c i s e l y  as  t h e  

r e p r e s e n t a t i o n  t h e o r y  o f  t h e  s y m m e t r y  g r o u p s  and d y n a m i c a l  g r o u p s  o f  p h y s i c a l  

s y s t e m s .  And t h e  a n a l y t i c a l  m e t h o d s  and s p e c i f i c  c a l c u l a t i o n s  i n  q u a n t u m  t h e o r y  

a r e  p e r f o r m e d  mos t  e c o n o m i c a l l y  i n  t e r m s  o f  t h e  r e p r e s e n t a t i o n s  o f  t h e  L i e  and 

e n v e l o p p i n g  a l g e b r a s  and t h e i r  m a t r i x  e l e m e n t s .  I n  t h e s e  n o t e s  I g i v e  an o u t l i n e  

o f  t h e  d e v e l o p m e n t s  o f  t h e  g roup  t h e o r e t i c a l  i d e a s  and m e t h o d s  m a i n l y  f o r  t h e  

e l e c t r o n ,  b u t  o f  c o u r s e  a l s o  a p p l i c a b l e  f o r  o t h e r  q u a n t u m  s y s t e m s .  Wi th  an 



audience of both mathematicians and physicists in mind, I hope this presentation 

will be elementary and self-consistent, although some may find the text to be a 

bit too mathematical, others to concise in physics. 

II. The Heisenberg Algebra h n and Kinematical Algebra k n 

The algebraic quantum theory goes back to the initial work of Heisenberg, and 

the Born-Jordan-Heisenberg formulation of quantum mechanics. 

For a mechanical Hamiltonian system of n-degrees of freedom with n 

generalized coordinates qi, and n conjugate momenta Pi, i = i, 2, .... n, we 

have the Heisenberg algebra h n defined by the commutation relations: 

[qi' qj] = 0 ' [Pi' Pj] = 0 ; i, j = 1,2 .... n 

h : (I) 
n [qi' Pj] = i~ ~ij J ' [Ji qi ] = 0, [J, pj] = 0 

Here we have introduced, for purpose of later generalization, an operator J which 

in h n has been choosen to be the identity operator. This can be done as long 

as, as is well known, p's and q's are not finite-dimensional matrices. 

Originally Heisenberg introduced Pi, qi as matrices in the energy basis 

of the quantum system. With the advent of transformation theory and Hilbert space 

formulation, eqs. (i) are general operator relations independent of basis. 

The Heisenberg algebra h n can be extended to a kinematical algebra k n 

with the inclusion of SO(n)-rotation elements £ij = - £ji. The additional 

commutation relations to eqs. (I) are 

[qi' £jk ] = i~ (~ik qj - ~ij qk ) 

[Pi' £jk ] = i~ (~ik Pj - 6ij Pk ) 

k': (2) 
n [£ij' ~£] = i~ (~ik £j£ + 6j£ £ik - ~jk £i£ - ~i£ £Jk ) 

[J, £ij] = 0 

1 
The dimension of k n = h n + k n' is ~n+l)(n+2) 

Lie algebra of SO(n+2) or SO(n,2). 

, the same as that of the 



Any representation of h n can be extended to a representation of k n by the 

following realization of £ij: 

£ij = qi Pk - qk Pi (3) 

derived from the physical meaning of £ij as the components of orbital angular 

momentum. In this case k n is just a derived algebra from hn, a Lie algebra in 

the enveloping algebra of h n. For this type of representations of kn, the 

representations of k n remain irreducible for the subalgebra hn; conversely 

representations of h n are automatically extended to the representations of k n. 

But there are other representations of k n. For example we can set 

Aij = qj Pi - qi Pj + Sij (4) 

where Sij are the spin operators. We can then enlarge our dynamical system by 

the inclusion of the commutation relation of Sij , [Sij , Sk£] , or just keep 

the algebra kn, independent of the realizations (3) or (4), and consider all its 

representations. 

Sofar the kinematic algebra k n describes the quantum system at a fixed time 

t. They can be realized also as differential operators acting on a time-dependent 

wave function ~(q,t) (SchrDdinger representation), or they can be given a 

time-dependence q = q(t), p = p(t), acting or a time-independent Hilbert space 

(Heisenberg representation). Since the Hamiltonian system is characterized by a 

Hamiltonian H and the time evolution of the system by a unitary operator U(t-t0) = 

e-i~H(t-t0 ), we have a quantum dynamical system of 2n-dimensions: 

= ! [H, qj ] 

= i 
pj  { [H, P j l  , j = 1, 2 . . . .  n (5 )  

Because  we a r e  i n t e r e s t e d  in  t h e  g e n e r a l i z a t i o n  of  t h e  o p e r a t o r  J in  eq .  ( 1 ) ,  i t  

i s  i m p o r t a n t  t o  n o t e  t h a t  i f  one p o s t u l a t e s  quantum m e c h a n i c s  f i r s t  by e q s .  ( 5 ) ,  

instead of eqs. (i), the most general Heisenberg commutation relations compatible 

with (5) are of the form I 



[qi' Pj] = iI ~ij F (6) 

where F can be a function of the Hamiltonian. 

A nonrelativistic quantum system must also show the symmetry under Galilean 

transformations of space and time if it is a system existing in space-time. For 

this purpose we introduce the total momentum of the system ~. [If qi are the 

+ 

cartesian coordlnates, then ~ = El + .... + Pn, otherwise ~ is related to Pl, 

qi in a more complicated way]. Similarly, the system will have a total angular 

momentum ~, also a function of p's and q's. The Introdution of the generators 

of velocity (or boost) transformations is more subtle. They have explicit 

time-dependence in addition to their time evolution 

= ~ ~j = I (tP i - mj qj) , (7) 
J J 

for Cartesian coordinates qj. The ten operators P0 = H, ~, ~ and ~ are the 

generators of the Galilean group G . The representations of the Galilean group G 

cannot completely characterize our dynamical system of 2n degrees of freedom; the 

system is composite, it has a lot of internal degrees of freedom; the representa- 

tion of G will be highly reducible. Irreducible representations of symmetry 

group apply to elementary systems. 2 In the purely geometric definition of the 

Galilean algebra we have 

[~' Pi ] = 0 (8) 

But in the quantum mechanical realization (7) we have 3 

[M~ j) , ek ] = ih m (j) ~ik (9) 

or, more generally, 

[M i , ek ] = lh~ 6ik (9') 

where~ is a mass operator. This is another instance, llke eqs. (i) and (6), 

where we obtain new operators J, F,~ in generalizing the simple commutation 

relations. The mathematical interpretation of (9) instead of (8) is that quantum 



theory uses actually projective representations (or ray representations) of 

symmetry groups, because an overall phase of the wave function is not observable; 

a state is characterized only by ray in Hilbert space. Equivalently, quantum 

mechanial representations are extensions of the geometrical representations of 

symmetry groups and algebras. 

III. SO(n+2) and Compact Quantum Systems 

Let us now see the position of the algebras h n and k n within the Lie 

algebra of S0(n+2) or SO(n,2). We denote the generators of SO(n+2) by JAB = 

-JBA ; A, B = i, .... n+2. 

Let 

They satisfy 

[JAB' JCD ] = i(gAC JBD + gBD JAC - gBC JAD - gAD JBC ) (i0) 

= ~ I 

Jij = %! S.Ij ' Ji,n+l = !l Qi ' Ji,n+2 ~ Pi ' Jn+2,n+2 = -2 J (ii) 

where for dimensional reasons we have introduced an "elementary length" %, and in 

view of the following applications, new coordinates, and momenta Qi, Pi. 

Explicitly the antisymmetric set of generators are 

'0 S12 S13 ..... Sln Q1 PI 

0 S23 .... S2n Q2 P2 

, , , , , . ° , , , , . , . . , . , .  

0 Sn-l,n Qn-1Pn-i 

0 Qn Pn 

0 J 

0 

To the Heisenberg algebra h n corresponds now the algebra 4 

(11') 



~2 
[Qi' Qj] = i ~- Sij ; [Pi' Pj] = 4i -~2 Sij 

~2 
Hn: [Qi' Pj] = i~ 6ij J ; [Qi' J] = i ~--Pi 

[Pi ' J] = 4i --~ Qi ; i,j = i ..... n 

The differences between h n and H n are that now the coordinates and momenta 

among themselves do not commute, and J also does not commute with Qi and 

However, the extended kinematical algebra k n' of eq. (2) remains the Pi. 

sa~e: 

[Qi' Sjk] = i~ (~ik Qj - ~ij Qk ) 

[Pi' Sjk] = i~ (~ik Pj - 6ij Pk ) 

[Sij' Skl] = i~(~ik Sjl + 6jl Sik - ~jk Sil - 6ii Sjk) 

[J, Sij ] = 0 

(12) 

(13) 

In contrast to the Heisenberg algebra (i) - (2), the new algebra (12) - (13) now 

admits finite-dimensinal representations for Qi, Pj, and Sij. We shall see 

in fact that such systems actually occur in nature, namely as the internal struc- 

ture of the electron and other relativistic spinning particles. In particular, 

the fundamental spinor representations of SO(n+2) comes as close as possible to 

the Heisenberg commutation relations in that J is traceless, has unique square and 

eigenvalues ± I. The dimension of this representation is 2 P, where p = I/2(n+l) 

for n odd and p = I/2, for n even, in which case there are two inequivalent repre- 

sentations. These representations coincides with the representations of Clifford 

algebras and are related with some realizations of superalgebras. The passage 

from SO(n+2) to k n is via the contraction of the Lie algebra, g We define, 

starting from SO(n+2), 

~ 

qi m el Qi ' Pi ~ e2 Pi ' J E Clg2 J , £ij ~ Sij (14) 

and then obtain 



2 ~ -~.12 2 
[qi' q j] = i % x2 e I £ij ' [Pi' Pj] = 4i --12 e2 £ij 

~ i__2 2 ~ 
[qi' Pj] = i~ 6ij J , [qi' ~] = - i ~2 el Pi 

2 ~ 
-~ e2 qi [Pi ' ~] = 4i %2 (15) 

There are two routes now. Either we let first e I + 0 and then e2, or vice versa. 

The intermediate algebra when one E is set equal to zero and not the other, is 

interestingly, the euclidian algebra e(n+l) in (n+l) - dimensions. 

All these relations show that the dynamical systems corresponding to (12), 

(13) are natural counterparts of the usual Heisenberg systems and should be also 

important. We recall here that finite quantum systems were first introduced by 

Weyl. 5 Weyl also treated the passage from Heisenberg algebra to the Heisenberg 

group, i.e. group whose infinitesimal generators are Pi and qi, and recognized 

that the unitary representations of the Heisenberg group can be considered as ray 

representations of infinite abelian groups. Similarly the fundamental spinor 

representations of SO(n+2) can be considered as ray representations of finite 

abelian groups: 6 n commuting parity like operators r i with 

r2"i : 1 , Fir j : FjF i ; i,j = i, 2, .... n (16) 

have a projective representations of dimension 2 ,D/2 or 2(n-l)/2 which is a 

Clifford algebra or the fundamental representation of SO(n+2). It is an open 

problem, as far as I know, to have a general theory of the relation between the 

projective rpresentations of finite groups and the corresponding Lie algebra 

representations. 

The Heisenberg algebra can be transformed, as is well-known, into the boson 

algebra. In our case the new boson algebra maybe defined by ~ 

Ai = !% Qi + i 27A Pi ' A~ = ii Qi - i 27A p.l (17) 

then we find the following commutation relations 
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~A i ,  ~1  : o , tA~, ~J  : o , ~A~, ~J 

[A i J] = -2A. [Ai, A +1 = a. J + 2 i S. ' i ' ] l j  ~ i ]  

2A + , 
1 

(18) 

This system is naturally associated with a dynamical system 

hm 
. = - IA~+A, A A+J o -- J (19) 

2n ~J ±a 2 

with oscillator equations 

i i = - imA i , A i = im A i (20) 

The double commutators are 

, = - A.) [[A i , A~] ~] 2(~iJ ~ + 6Jk Ai 6ik 3 

[[Ai ' A 3]' ~] = 2(-6ij ~ + 6jk A+I - 6ik A+)3 

+ ajk [A i , A~] - ai£ [A k , A31 ) (21) 

It is interesting to compare the system (21) with another finite system associated 

with the Hamiltonian 

H = ~__m_m (a + Ai + ai A+ ) (22) 
n-I 

and satisfying the relations of the Lie superalgebra s~(£,n) 

{ A i ,  Aj  } = 0 , {A + , A3} = 0 (23)  

Only integer spin representations of SO(n) - subalgebra of s~(£,n) occur here, 

whereas the system (21) also allows half-integer spins. 
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IV. Dynamics in the New Coordinates Qi, Pi 

We can now formulate dynamical problems with our new canonical coordinates 

Qi, Pi satsifying the commutation relations (12) and (13) assuming a 

Hamiltonian. They provide novel type of finite (and infinite) quantum dynamical 

systems, and, by going over to the corresponding Poisson brackets, classical 

dynamical systems as well. Some of the problems of quantum dynamical systems, 

such as quantum chaos, maybe studied on such simple finite systems with their 

unusual phase space. Even a one-dimensional system of a free particle is a 

nontrivial interesting dynamical system: 8 We have in this case the commutation 

relations 

%2 
[Q, P] = lh J, [Q,J] = - i -- P , [e,J] = i ~2~. Q (24) 

and as the Hamiltonian of "free particle" we may choose 

H = I p2 (25) 

2m 

The algebra (24) is isomorphic to so(3). If we diagonalize P in an irreducible 

(2j + l)-dimensional representation of S0(3) with spectrum {-j, ...., j}, then the 

spectrum of energy is given by E = aj 2 , a(j-l) 2, ...., 0 (j integer). The 

spectrum of an "oscillator" with H = ~ p2 + ~Q2 is a difficult problem of ~ and 6 

are arbitrary. 

The Heisenberg equations for H = ~ p2 + B Q2 are highly nonlinear 

12 
y2)(pQ + QP) (26) = - B(QJ + JQ) , Q = =(PJ + JP) , J = (8 -- - 

~2 X2 

compared to the ordinary oscillator p = aq, q = bp. 

Actually such a dynamical system occur in nature, namely in the internal 

motion of the relativistic Dirac eleeton, a dynamics called the Zitterbewegung. 9 

It is possible to identify in the rest frame of the electron (p = 0), operators 

Qi and Pi as well as Sij and J, i = i, 2, 3, which precisely satisfy the 

commutation relations (12) and 13). In this case they have been extracted from 

the Dirac matrices, hence they are 4 × 4-matrices. The "Hamiltonian" representing 
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the internal energy is in this case just J so that Heisenberg equations are 

linear oscilator equations 

QJ m ] 3 ~3 QJ 3 
= 0 (27) 

The Zitterbewegung is just this oscillation of the charge of the electron around 

its center of mass. 

For the massless neutrino we obtain an internal dynamics again with the same 

algebra (12) and (13) but everywhere ~ij replaced by ~ij and Sij replaced by {ij 

where 

PiPj ~ PiPk PkPj 
6ij = 6ij - ~2 ' Sij = Sij - p2 Skj - "p2'' Sik (28) 

which means that the internal motion takes place on an hypersurface perpendicular 

÷ 

to p , and that it has effectively two degrees of freedom. 10 

V. Relativistic Systems 

There are different approaches to the dynamics of a single relativistic 

particle which are all at the end equivalent. But the relativistic dynamics of 

two or more interacting particles is more subtle. 

Continuing the line of our developments in the previous Sections, we can 

still start from the Heisenberg algebra (I), the angular momentum algebra (2) and 

the realization of angular momentum given by (4) including spin. Instead of the 

nonrelativistic Galilean algebra we must now realize the Poincar~ algebra with the 

+ ~ (angular momentum), and again the boost operators generators P0 = H, 7, 

satisfying the commutation relations of the Poincar4 Lie algebra: 

[~i' ~j] = 0 , [~i' H] = 0 , [Ji' H] 

[Ji' Jj] = ~ijkJk ' [Ji' ~j] = eijk ~k 

[Ji' Mj] = eijk Mk ' [Mj, H] = wj 

[Mi, Mj] = - Cijk Jk ' [Mi' ~j] = 6ij H 

= 0 

(29) 
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Conversely if one starts from an irreducible representation of the Poincar~ group 

with generators JBv and PU there are no position operators q~. How do we 

introduce them? Under certain additional criteria and using imprimitivity 

theorems one can introduce position operators. II For example, for a spinless 

particle, they can be defined as differential operators on the carrier space of an 

irreducible representation 

Pk 
(qk @)(P) = i ( ~ . . . .  ) @(p) (30) 

~Pk 2p~ 

or, for a spinning particle, by 

(~P))k + (ExP)kPo Pk 
+ - i -7} ¢(p) (30') 

(qk ~)(P) = {i ( a j_~pk Yk)2Po - i 2p~ (Po + m) Po 

However, for a system like the Dirac electron, we have a reducible represen- 

tation of the Poincar~ group and the above position operator does not really 

apply. For a single spin I/2-irreducible representation of mass m given by 

b m ,  1/2 e ipa D (I/2'0) (A) ~(L~ 1 p) (31) 
(a,A) ~(P) = 

and acting on functions ~(p) over the mass hyperboloid (p2 = m 2, p0 > 0), parity 

operator is not defined and there is no four-vector current operator. We double 

the space by 

b m ,  i/2 eipa [D(I/2,0)~ D(0,1/2)] @(L~ I p) (a,A) ~(P) = (31') 

We can work in this doubled ~pace but at the end we have to reprojeet on two 

11 
physical components by the projection operator ~ = ( 00) = i/2(Y0 + I). This 

projection operator in an arbitrary frame is the Dirac equation II 

(~ p - m) @ (p) = 0 , pO > 0 (32) 

The other half-space describes the antiparticle 

( y ~ P  + m) ~(p)  = 0 , pO > 0 (33) 
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(The solutions of (32) for P0 < 0 coincide with those of (33) for p0 > 0). 

Now for the Dirac electron-positron complex it is more convenient to 

introduce two position operators and not one. One is a center of mass coordinate, 

the other a relative cordlnate, and their sum is the coordinate x that appears 

in the Dirac equation, and x is the position of the charge, because the electro- 

magnetic field couples locally to x. The fact that center of mass position and 

the charge position do not coincides indicate an internal structure which shows 

itself in the spin degrees of freedom. In contrast to the representation (4) or 

(29), spin is a dynamical variable, hence any spinning system must have a larger 

set of basic dynamical variables than the Heisenberg algebra of p's and q's. 

Alternatively we can speak of an external Heisenberg algebra and an additional 

internal Helsenberg algebra. And it turns out that the former satisfy eqs. (i), 

but the latter the new Heisenberg algebra (12), as we have already mentioned. 

In this Section we shall give the covariant version of the new internal 

Heisenberg algebra (12). 

It turns out that both quantum Dirac theory of the electron and a recently 

proposed classical relativistic model for the spinning electron lead exactly to 

the same internal algebra, the latter in terms of the Poisson brackets, the 

former, of course, in terms of commutators. The classical theory is based on the 

Lagrangian 

L = - -~ (~z - ~z) + p (x~ - [y~z) + e A [7~z (34) 
2i 

Here z(T) is a complex c-number spinor, z(T)e C #, representing the internal spin 

degrees of freedom, T = an invariant parameter. The dynamical system (34) is a 

Hamiltonian system with a covariant "Hamiltonian" (relative to T) 

~= y~ --Zy~ Z ~ ~v~ ; and (x~ , ~ = p - e A~) and (z, i-{) are conjugate pairs• 

One can elimnate z, ~ in favor of the spin variables S~u and obtain the 

dynamical system 

= v , v = 4S ~ 

= eF v v S = ~ v - ~ v (35) 
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with the Poisson algebra 

{x, ~v}  

{v, v } = 

{s~, sy~ } 

= gu~ , {~ , ~ } = e Fu~ 

4 S {Sa~ , vv} = g~ v~- gs~ v 
a 

= gay $86 - gsY Sa8 - ga6S87 + gB6SaY (36) 

Note that momentum and velocity, ~U and vu, are independent dynamical 

variables even for a free particle (Au = 0). [A similar situation occurs if the 

radiation reaction force of the classical electron is taken into account]. 13 For 

a free particle we now separate internal and external coordinates as follows. Let 

x = X + Q~ hence v = X + Q . Then we set X = p /m which is the 

velocity a particle of momentum p~ and mass m. Then we can interprete Q~ as 

the relative coordinate and P~ = mQ~ as the relative or internal velocity and 

x~ as the position of the charge. Similarly, the total angular momentum J~v 

can be decomposed either as J~9 = L~v + S~9 (orbital and spin angular 

momentum of the charge), or as J~ = L~v + [U~ (orbital angular momentum 

of the center of mass and that of internal motion). Then the internal algebra 

generated by Q~, L~, [~9 and~ is closed and is the covariant form of the 

algebra (12) - (13) (or (28)): 12 

{Q~,Qv } = m -2 E 

{P ,PJ = 4m 2 Z v , {P~,~ } 

= - m-I , {O~,~ } {Q~,P~} g~ 

{Q.'~} = (g~= QB - g~O~) 

{P ,Z ~} = (g ~ P8 - g~sPe ) 

~ ~ ~ 

{Z~8'Ey6} = gaT Z86 + g86 E y g~6 EBy - gsyZa~ 

-4m2Q 

= m-ip 

(37) 

where 
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P~Po 

g~v  = g~v  - m 2 

P~P PvP  
E = S - S - -- S (38) 

~v ~v m 2 ~v  m 2 ~ 

Equations (38) show that the internal motion, in spite of the covariant 

4-dimensional form, is actually three-dimensional and takes place on a 

3-dimensional hyper-space in Minkowski space perpendicular to p~. 

In the quantum case, also we can derive the equations of internal motion 

inside the electron in a covariant form in the proper-time formalism, generalizing 

the eqs. (12), (13), and (27). In order to do this we write the Dirac equation in 

a five-dimensional form ~(x~,T), where ~ is an invariant parameter -conjugate to 

mass m. The "Hamiltonian" with respet to T is 

= y~p~ (39) 

It is then possible to solve the quantum Heisenberg equations in covariant form. 

Again setting the charge coordinate X~ equal to 

x~ = X~ + Q~ (40) 

where X~ is the center of mass coordinate and Q~ the internal coordinate, and 

setting PB = mQ~" , ~ =~-ip~ , we not only find the explicit time-dependences 

Q (~), P (T), but also the internal algebra generated by Q~, P , S and The 

result is exactly the equations (37) and (38) with the only difference that the 

Poisson bracket { I is replaced by the commutator [ ] and a factor i appears 

everywhere on the right hand side of eqs. (37). I~ This correspondance constitute 

the canonical quantizaion of the classical electron theory to the Dirac electron. 

I believe this solves one of the outstanding problems of relativistic quantum 

theory, namely the precise classical counterpart of the Dirac electron and the 

nature of the phase space of the quantum spin. We may recall that Dirac 

discovered his equation, "by chance", as he put it, IS and not by quantization of 

an existing classical model. Ever since, the physical meaning of the Dirac 

matrices has been rather mysterious. We can now directly relate them to the 
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internal oscillatory degrees of freedom z and ~. In fact, the real and imaginary 

parts of z and ~describe real oscillations of the charge around the center of 

mass and spin corresponds to the orbital angular momentum of these internal 

oscillations. One of the dynamical equations (35): 

= v = F~z (41) 

relates the velocity of the charge to an internal velocity ~ z anologous to a 

rolling condition of a ball on an inclined plane. 

Another noteworthy feature of the classical model is that mass m does not 

enter into the basic Lagrangian (34) as a fundamental parameter. It appears 

rather later as the value of the constant of motion = ~y~zP~. Hence it 

can be modified by external interactions or by self-interaction. This is also 

true in the covariant formulation of the Dirac electron: mass is the eigenvalue 

of the constant of the motion ~ = ~ .  The Lagrangian (34) has however 

besides charge e, a fundamental constant % of dimension of action which in 

quantlzed form becomes the Planck's constant h. 

A second independent form of the quantization of the classical model of the 

electron is via the path integral formalism. It was also an outstanding unsolved 

problem how to obtain the quantum theory of discrete spin of the electron by a 

path integration based on a continuous classical action. "16 Since we have now an 

action (34) which is in one-to-one correspondance with the Dirac electron in 

canonical formalism, we can evaluate the path integrals not only in the (x~, 

p~) space, but also in the (z,~)-space. Indeed, the quantum propagator can be 

obtained in a rather straightforward way not only for a free electron, 17 but also 

for an electron in an external field and for several interacting particles. 18 We 

have now a direct passage from classical particle trajectories to Feynman diagrams 

of perturbative quantumelectrodynamies. 
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VI. Further Generalizations of the Universal 

Role of the Conformal Dynamical Group 

Having obtained the classical or the quantum algebra algebra (37) from the 

theories Of the electron, we can now consider other representations or theories of 

the electron, we can now consider other representations or realizations of this 

algebra, than just the four-dimensional realization for the electron. We then 

obtain a family of compact quantum systems representing relativistic systems in 

their center of mass frame. The corresponding relativistic wave equations can he 

obtained by boosting these systems 

v = /m + I p P 
mU 

In the limit we get the infinite-dimensional representations of the algebra 

(37) and we shall now show that these describe composite relativistic objects, 

llke H-atom or hadrons or nuclei. 

If we disregard for a moment the restrictions (38), the algebra (37) can be 

made to be isomorphic to the Lie algebra of dimension 15 of the conformal group. 

[Here F~, Q~ are combinations of the standard generators "P~" and "K~" of 

the conformal group]. However, because of the restrictions (38) not all of the 15 

generators are independent and we have effectively the Lie algebra of S0(3,2). 14 

The electron theory has in addition the observables ~y5 z and ~y~y5 z which are 

deeoupled, but should be included in a full theory. These observables restore 

again the dynamical group S0(4,2). The electron theory (34) in fact is more 

concisely formulated in 5 (or 6)-dimenslons because of the existence of 5 

anticommuting y-matrices. The 5-velocity v a = (~y~z, i~Y5z) satisfies 

a 
= I. And with S = - !~y~ysZ , $55 = 0 , we can write the v v 

a ~5 2 

electron equation in the form 

= ~b x b e + (42) mx a Fab Sab 

Quantummechanical ly a l s o ,  the  p r o p e r - t i m e  e l e c t r o n  e q u a t i o n  i s  more c o n c i s e l y  

w r i t t e n  in  the  5 -d imens iona l  form. 
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The physical interpretation of the conformal algebra (37) in the case of 

infinite-dimensional unitary representations is well-known. In this case P~ , Q~, 

are bona-fide relative coordinates of the constituents of a composite system 
Dv 

in the center of mass frame. 19 For example, in H-atom, they are realized by the 

relative coordinates r, p of the electron-proton system. Again a covariant wave 

equation for the moving atom may be obtained by boosting the system. The full 

algebraic framework of a moving relativistic system consists of the internal 

algebra plus the external Poincar~ algebra which itself maybe generalized to a 

conformal algebra of space-time. 20 We should emphasize the physical difference 

between the two realizations of the same conformal algebra, one as the usual 

space-time interpretation, the other entirely different internal dynamical 

interpretation. 

The appearance of the conformal dynamical group S0(4,2) in the dynamics of 

the 2-body problem maybe traced to electromagnetic interactions and to the zero 

mass of the exchanged photons. It is due this fact that the relative four vector 

coordinate r~ = XlB - x2~ satisfies r~rB = 0, and this condition 

then determines the realization of the conformal group in momentum space used in 

the relativistic Coulomb problem. 19, 20 This is completely dual to the conformal 

group in coordinate space when the masslessness condition P~P~ = 0 is 

satisfied. 

Finally, I may add the remarkable role, which is surely not accidental, of 

the conformal dynamical group in the symmetry of the Periodic Table of elements 

which enhances its universality. 21 



20 

REFERENCES 

I. E. P. Wigner, Phys. Rev. 77, 711 (1950). 

2. A. O. Barut, in Lectures in Theoretical Physics, Vol. IXB, (Gordon & Breach, 

1967), p. 273. 

3. V. Bargmann, Ann. of Math. 59, I (1954). 

4. A. O. Barut and A. J. Bracken, J. Math. Phys. 26, 2515 (1985). 

5. H. Weyl, The Theory of Gorups and Quantum Mechanics (Dover, New York, 1950), 

p. 272-280. 

6. A. O. Barut and S. Komy, J. Math. Phys. ~, 1903 (1966); A. O. Barut, J. 

Math. Phys. ~, 1908 (1966). 

7. T. D. Palev, J. Math. Phys. 23, 1778 (1982). 

8. A. J. Bracken, (to be published). 

9. A. O. Barut and A. J. Bracken, Phys. Rev. D23, 2454 (1981); D24, 3333 (1981). 

I0. A. O. Barut, A. J. Bracken, and W. D. Thacker, Lett. Math. Phys. 8, 472 

(1984). 

II. A. O. Barut and R. Raczka, Theory of Group Representations and Applications, 

Second Edition, 1980, (PWN-Warsaw). 

12. A. O. Barut and N. Zhangi, Phys. Rev. Lett. 52, 2009 (1984). 

13. A. O. Barut, in Differential Geometric Methods in Physics, Lecture Notes in 

Math. Vol. 905 edit. H. Doebner (Springer, 1982), p. 90; and in Quantum 

0ptics~ Relativity and Theory of Measurement, edit. P. Meystre (Plenum, 

1983); p. 155. 

14. A. O. Barut and W. D. Thacker, Phys. Rev. D31, 1386; 2076 (1985). 

15. P. A. M. Dirac, The Relativistic Electron Wave Equation, Proc. European 

Conference on Particle Physics, Budapest 1977, p. 17. 

16. R. P. Feynman and A. R. Hibbs, Quantum Mechanis and Pat h Integral s (McGraw 

Hill, N.Y., 1965), p. 34-36; L. S. Schulman, Techniques and Applications of 

Path Integration (Wiley, N.Y., 1981). 

17. A. O. Barut and I. H.Duru, Phys. Rev. Lett. 53, 2355 (1984). 

18. A. O. Barut and I. H. Duru, J. Math. Phys. 



21 

19. A. O. Barut, in Groups, Systems, and Many-Body Physics (Vieweg Verlag, 1980), 

edit. P. Kramer e_t_t al, p. Ch. VI. 

20. A. O. Barut and G. Bornzin, J. Math. Phys. 15, 1000 (1974). 

21. A. O. Barut, in Prof. Rutherford Centennary Symposium, edit. B. Wybourne, 

(Univ. of Canterbury Press, 1972); p. 126. 



SL(4,R) DYNAMICAL SYHMETRY 

FOR HADRONS 

Dj. ~ija~ki 

Institute of Physics 
P.O. Box 57, Belgrade, Yugoslavia 

The double covering group SL(4,R) of the SL 4,R) group is 

proposed as a dynamical symmetry for hadron resonances. It is sug- 

gested that the spectrum of baryon and meson resonances, for each fla- 

vour, corresponds to a set of infinite-component field equation pro- 

jected states of the spinor and tensor unirreps of SL(4,R) respecti- 

vely. SL(4,R) is a geometrical space-time originated symmetry, pre- 

sumably resulting from QCD, with possible connection to the affine 

gauge gravity and/or extended object picture of hadrons. The compari- 

son with experiment seems very good. 

Introduction 

We have proposed I) recently that the complete spectrum of reso- 

nances for each baryon and meson flavour can be determined by infini- 

te-component fields 2'3) corresponding respectively to spinor and ten- 

sor infinite-dimensional unitary irreducible representations 4) (unir- 

reps) of the SL(4,R) group, i.e. the double covering of the SL(4,R) 

group. The suggested model makes use of the recent results about the 

SL(4,R) multiplicity-free unirreps, with the field theory serving as 
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a guiding principle in actual assignement of hadronic states and ma- 

king a contact with observations. 

According to QCD, the observed spectrum of hadrons represents 

the set of stable and metastable solutions of the Euler-Largrange 

equations for a second-quantized action, constructed from quark and 

gluon fields. The parallels are with Chemistry, where the elements and 

compounds, with their excited states,are known to represent the solu- 

tions of Schr~dingerts equation, with nuclei, photons and electrons as 

constituents. In each of these cases however, it has not been possible 

to use the fundamental dynamical model for actual calculation beyond 

the relevant "hydrogen atom" level. In hadron physics, the experimental 

exploration of the hadron spectrum goes on even though theory has moved 

away to the constituent level, except for the "bag model" approximate 

calculations. Our model may arise as a geometrical, symmetry of the QCD 

equations, in the same sense that the Nuclear Shell Model is belived to 

be generated by meson exchanges between nucleons. Alternatively, it is 

also possible that the success of the SL(4,R) scheme be due to an addi- 

tional interaction component which is generally not included in the 
color 

SU(3) setting. Such a component might involve extensions of gravi- 

ty such as might arise from an GA(4,R) gauge, 5-8) or from a string-like 

generalized treatment incorporating the bag model. An evolving confined 

lump (the bag) would indeed be represented by an ~(4,R) 4-measure, 9-II) 

just as the evolving string is given by that of ~(2,R)~SU(I,I), the 

2-measure spanned by the spinning string. 

In contradistinction to leptons, which appear as point-like 

objects and whose space-time structure is completly determined by the 

Poincar4 group, the strongly interacting particles, the hadrons, show 

additional structure. Hadrons of a given flavour (the same internal 

quantum numbers) lie on practically linear trajectories in the Chew- 

Frautschi plot (J vs. m2). Furthermore, particles belonging to the same 

trajectory satisfy the AJ=2 rule. The seemingly infinite number of 

equally spaced hadron states of Regge trajctory were interpreted as 

excitations of a single physical object and classified by means of the 

unitary irreducible representations (unirreps) of the noncompact 

SL(3,R) group. 12) A minimal fully relativistic extension of the 

SL(3,R) model is given by the SL(4,R) spectrum generating symmetry, 13) 

with the six Lorentz J and nine shear T generators. By adding the di- 

lation invariance, another important feature in hadronic interactions, 
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one arrives at the general linear group GL(4,R). Finally, together with 

the translations one obtains the general affine group GA(4,R). 

Several, manifestly relativistic, extended object models have 

been proposed either to explain quark confinement or with a built in 

confinement of them. According to the bag model, a strongly interac- 

ting particle is a finite region of space-time to which the fields 

are confined in a Lorentz invariant was by endowing the finite region 

with a constant energy per unit volume B. Strong interactions are 

descibed by the following action integral 

A = fdt /d3X~QCD(quarks, gluons) - B]. 

The second term is invariant for fixed time with respect to the 

SL(3,R) transformations. In general, the second part of the bag action 

is invariant under the SL(4,R) group, which contains as subgroups the 

Lorentz group and SL(3,R). The dynamics of a hadron described by say 

a spheroidal bag are rotationally invariant giving rise to the conser- 

ved bag internal orbital angular momentum L, and to a good quantum 

number K which is due to the rotational invariance about the bag sym- 

metry axis R(~). The wave function of such a bag is of the form 

L L+K 
XK(g)DKM(~,B,7) + (-) X_K(g)D L_KM(~,B,7), 

where ~, B, Y are Euler angles and q are the remaining coordinates. 

The states with K=O can be labeled by the eigenvalue r of R, where 

r=(-) L and therefore the allowed values of L are L=0,2,4,... for K=O, 

r=l and L=I,3,5,... for K=O, r=-l. When K~O there is only a constraint 

L)K, i.e. L=K,K÷I,K+2,... These values of L are exactly those of the 

SL(3,R) unirreps. For K=O, group theoreticaly one has the Ladder unir- 

reps, while phenomenologically one has the states belonging to the same 

Regge trajectory. It turns out that the SL(4,R) unirreps desribe both 

the orbital (SL(3,R) unirrep) and the radial excitations of a hadronic 

bag. 

The success of the dual string models indicates strongly the 

importance of considering hadrons as extended objects. These models 

are based on the SL(2,R) group. Dual amplitudes, as well as the Vira- 

soro and the Neveu-Schwarz-Ramond gauge algebras can be directly 

constructed by making use of the infinite dimensional SL(2,R) represen- 

tations. The string model can be generalized to the 3-dimensional model 
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of a lump, i.e. to a region of 3-space embedded in space-time. It is 

parametrized by 4 internal coordinates y~ D=0,I,2,3. The first one yO 

plays the role of the proper time, while the remaining three yi can be 

thought of as labeling the points belonging to the lump. The coordina- 

tes xa(y ~) locate the lump in the embedding space-time as internal co- 

ordinates. In analogy with the relativistic action of a point particle 

or of a free string we take the relativistic action for a free llamp to 

be proportional to the volume of space-time generated by the evolution 

of the lump, i.e. 

o 
A =-~-2 ~Y~dy°Ivd3y[-det(g~9)]i/2, 

Yl 

where g~=qab(~xa/~y U) ~xb/3y v) is the metric induced on the submani- 

fold of space-time generated by the lump from the embedding flat space- 

time. V is the volume of the lump and ~ has the dimension M -2. If we 

perform variations for which initial and final positions of the lump 

are not kept fixed, but only actual motions of the lump are allowed, 

we can compute the momentum Pa' the angular momentum Mab and the shear 

Tab currents of the lump. The 7=0 integrated components of these ope- 

rators ever the lump volume V generate the SA(4,R)=T4~SL(4,R) group. 

m w 

GA(4,R) and SL(4,R) unirreps 

From the Particle Physics point of view, one is interested in a 

unified description of both bosons and fermions. This would require 

the existence of respectively tensorial and (double valued) spinorial 

representations of the GA(4,R) group. Mathematically speaking, one is 

interested in the corresponding single valued representations of the 

double covering GA(4,R) of the GA(4,R) group, since its topology, is 

given by the topology of its (double connected) linear compact subgroup 

SO(4). 

The GA(4,R) group is a semidirect product of the group of tran- 

slations in four dimensions (Minkowski space-time), and of the double 

covering GL(4,R) of the general linear GL(4,R) group, i.e. 

G-~(4,R) = T4~ ~(4,R). 

The GL(4,R) group can be split into the one-parameter group of 

dilations, and the SL(4,R) group. The latter is a group of volume 
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preserving transformations in the Minkowski space-time. The maximal 

compact subgroup of SL(4,R) is SO(4~. The universal covering, i.e. 

the double covering, group we denote by SL(4,R) and its maximal com- 

pact subgroup is S0(4) which is isomorphic to SU(2) ~SU(2). The 

SL(4,R) group is physically relevent since it has (infinite-dimensio- 

nal) spinorial unitary irreducible representations (unirreps) which 

are double-valued unirreps of SL(4,R). The SL(4,R) group has as a 

subgroup the Lorentz group SO(3,1), and correspondingly SL(4,R) has as 

a subgroup SO(3,1) ~ SL(2,C). 

The Lorentz group is generated by the angular momentum and the 

boost operators Ji and Ki, i = 1,2,3 respectively. We write them as 

Jab' a,b = 0,1,2,3, where Jab =-Jba" The remaining nine generators 

form a symmetric second rank shear operator Tab , a,b = 0,i,2,3, i.e. 

Tab = Tba and trTab = 0. The commutation relations of the SL(4,R) 

algebra are given by the following relations 

[Jab,Jcd] = -i(~acJbd - ~adJbc - ~bcJad + ~bdJac 

[Jab,Tcd] = -i(~acTbd + ~adTbc - ~bcTad - ~bdTac 

[Tab,Tcd] = i(qacJbd + ~adJbc + qbcJad + qbdJac ), 

where nab is the Minkowski metric ~ab = diag(+l,-l,-l,-l). 

1 1 1 c 
Jab = 2 (Qab-Qba)' Tab = Q(ab) = 2 (Qab+Qba) - 4 nabQ c' 

1 nabQC . The and D operators and the dilation generator is D = ~ c Tab 

form together a 10,component symmetric (not traceless) tensot 

1 
Q{ab} = 2 (Qab+Qba ~" 

The translation generators Pa together with the GL(4,R), generators 

Qab fulfil the GA(4,R) commutation relations 

[eab,Qcd] = i~bcead - i~adQcb, 

[Qab,Pc] = -i~acP b, 

[Pa,Pb] = 0. 

owing to the GA(4,R) semidirect product structure it is rather 

straightforward to write down its (unitary irreducible~ representations. 

The general recipe for constructing a semidirect product group repre- 

sentations is well known (Wigner, Mackey,...). There are two important 

ingredients to be determined: i) The orbits of the translations and 
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ii) The corresponding little groups (which are the subgroups of 

GL(4,R)). 

When the orbit is ~4-{0}, T4 being the character group of the 

translation subgroup, the corresponding little group is T3~ S-~(3,R). 

The T 3 subgroup is generated by Qoi = i/2(Joi+Toi)' i = 1,2,3 which 

commute mutualy. Now, the first possibility is to represent the whole 

little group trivially, and we obtain the scalar state ~(p). The se- 

cond possibility is to represent T 3 trivially, and the remaining 

SL(3,R) subgroup linearly. The SL(3,R) unitary irreducible represen- 

tations are infinite dimensional and can be both spinorial and tenso- 

rial. 14) These unirreps determine the Regge trajectory spin content. 

Let us consider now the GA(4,R) representations on fields. The 

~(4,R) generators Qa b can be split into the orbital and intrinsic 

parts 

a = ~a + 0ab, Q b b 

where the orbital part is of the form oa b = xapb , a,b = 0,1,2,3. The 

GA(4,R) commutation relations listed above are now supplemented by 

the following relations 

[ 5ab,Ocd] = 0, 

[ Qab,Pc~ = O. 

The linear GA(4,R) representations on fields are of the form 

(a,A) : ~(x) ÷D(A)Y(A-I(x-a)), 

D(A) = exp(-i~abQba ) 

and D(A) is a representation of the intrincis G-~(4,R) component. It is 

obvious from the above expression for the GA(4,R) representations on 

fields, that the essential part is given by the ~(4,R), i.e.~(4,R) 

unirreps. 

In the physical applications we will only make use of the mul- 

tiplicity free SL(4,R) unirreps. These unirreps contain each repre- 

4 sentation (jl,J2) of its SO( )-- SU(2)~SU(2) maximal compact subgroup 

at most once. The complete set of these representations is given as 

follows. 4) 

P rrincipal series: DPr(0,0;e2 ) , and DPr(l,0~e2 ), e2gR , with 

the {(jlJ2)} content given by Jl ÷ 92 m 0(mod 2), and Jl + J2 m l(~od 2) 

respectively. 
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S__upplementary series: DsupP(l,0;el),0<lelI<l, with the 

{(jl,J2)} content given by Jl + J2 ~ l(mod 2). 

Discrete Series: DdiSc(j0,0) and D disc 1 (0,Jo),j ° = 5,1, ,2 ..... 

with the {(jl,J2)} content given by Jl - J2 > Jo' Jl + J2 mJo(m°d 2), 

and J2 - Jl ~ Jo' Jl + J2 m J0 (mOd 2) respectively. 

Ladder series: Dladd(0;e2 ) and D ladd 1 , (~;e2),e2eR , with the 

{(jl,J2)}content fiven by {(jl,J2)} = {(J,J)lJ = 0,1,2 .... }, and 

{(Jl,J2 )} = {(J,J)lJ 1 3 5 = 2,2,2,...} respectively. 

_ladd,l. _disc.l DdiSc( 1 
The u ~), u [~,0) and 0,~) unirrep {(jl,J2)} 

-content is illustrated in Fig.l. 

Space-time des_ccription of leptons and hadrons 

The GA(4,R) symetry approach to Particle Physics, allows one to 

have rather different space-time field description of leptons and 

hadrons. For leptons we make use of the GA(4,R) representations, which 

are linear when restricted to the Poincar6 subgroup. 7) In this way lap- 

tons are essentialy given by the Dirac field, with the nonlinear sym- 

metry realizer given by the metric field. 

In the case of hadrons, the non-trivial part of the field 

structure is, as shown, determined by the SL(4,R) unirreps. Furthermo- 

re, there are additional constraints coming from the appropriate field 

equations. For the tensorial (meson) representations, the simplest 
_ladd.l . 

choices are either Dladd(0;e2 ) or m ~;e2) with a Klein-Gordon-like 

(infinite-component) equation 1'3) for the corresponding manifield ~(x) 

(3 ~ + m2)~(x) = 0. 

Spinor (baryon) manifields obey a first-order equation 2) with infinite 

X matrices generalizing Dirac's, except for the requirement of anti- 
ii 

commutation. The X U behave as a Lorentz 4-vector (~,~) and we are for- 
Zdisc.l .... disc 

ced to use the reducible pair of ~(4,R) unirreps o t~,u)~u 

(0,½) for the menifield Y(x), 

(iX ~U _ K)~(x) = 0. 

The X operators only connect the ljl-J2 I= ½ states across the two uni- 

rreps (see Fig.l). These are thus the only physical (propagating) sta- 

tes in Y(x), all others decouple. For the A(1232) system we use the 
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same pair of intrinsic, unirreps now adjoining a n explicit 4-vector 

index as in the Rarita-Schwinger field, 

(iXu~ - <)~p(x) = 0. 

The physical SO(4) multiplets projected out by Lorentz-invari- 

ance in the equations are thus 

Dladd(o,e2),#glueballs if any: {jl,J2 } = {(0,0) (i,i) (2,2)...}, 

Dladd.l i 1 3 3 5 5 
~,e2),~:{(jl,J2)} = {(~,~) (~,~)(~,~) .... }, 

DdiSc.l ^._ DdiSc(0,½),~:{(jl j2)} = {(½,0),(~,i),(~,2) .... }@ t~,u)~ , 5 

@ { ( 0 , 5 ) , ( 1  , ) , ( 2 ,  ) . . . .  } ,  

DdiSc 1 )~DdiSc 1 1 1 
= . . . .  

m{(~,l),(~,2),(,3) ..... }. 

For a given S0(4) representation (Jl'? , the total (spin) angu- 

• ~ ~(i) ~ + _ ~(2). The vector opera- lar momentum is ] = 3 + j(2), and N = ~71 2) 

tDr N connects different spin values, and is an odd operator under pa- 

rity. Thus the JP content of a (jl,J2) ~(4) representation is 

= )P _ 
JP (Jl + J2 )P' (Jl + J2-1)-P'(Jl + J2 -2 ..... (lJl J2 I)° 

The S-~(3,R) subgroup 9) unirreps determine the Regge trajcetory 

states of a given SL(4,R) unirrep. In decomposing an SL(4,R) unirrep 

v.r.t, the S-~(3,R) ones, 14) it is convenient to introduce a quantum 

number n defined by 13) 

Jl + J2 = J + n. 

Since the different spin values of an SL(3,R) unirrep are connected by 

an even parity quadrupole operator Tij , all unirrep states have the 

same parity. The SL(4,R) ladder unirreps contain an infinite sum of 

S-~(3,R) ladder unirreps~ 3) cf. Fig.2. 

The SL(4,R) unirrep wave equation projected states are in an 

excellent agreement with the observed hadronic states, l) We find a 

striking match between the (JP,mass) values and the wave equation-pro- 

jected SL(4,R) unirrep states. Moreover, a remarkably simple mass 

formula fits these infinite systems of hadronic states. For N and A 

(and the higher spin A) resonances we write 

m 2 i, i 1 n) 
= mo 2 + ~f (Jl + J2 2 2 
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where m O is the mass of the lowest lying state, and e'f is the slope 

of the Regge trajectory for that flavour (see Fig.2). We illustrate 

this mass formula for the best known system of N, A and A resonances 

(Fig.3, Fig.4 and Fig.5 respectively). For the average masses of the 

(j,j) unirreps of mesons belonging 

_ladd,l . 
to u ~,e2), 

_ 1 2 + 1 (j 5) 
m2 = m o ~-Tf 

-- i i  
while (at least) for the lowest SO(4) states (~,~) of opposite parity 

we find the following mass formula 

2 - m 2 = m 2 m 2 m (0) + (i + ) (0 +) + (i-). 
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A NEW QUANTUM RELATIVISTIC OSCILLATOR AND THE HADRON MASS SPECTRUM 
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Abstract 

We construct a new quantum relativistic oscillator (QRO) based on the 

spectrum generating group SO(3,2). We show that all the features of 

the three-dimensional harmonic oscillator are recovered in the non- 

relativistic limit. This QRO gives a classification of hadrons that 

leads to the linear Regge trajectories; moreover, the Regge slopes are 

SU(3) invariant. 

Introduction 

A QRO must satisfy essentially three criteria: 

i) The hamiltonian must be a Lorentz scalar. 

2) The usual three-dimensional harmonic oscillator should be 

recovered in the limit C ÷ ~. 

3) The mass levels of the QRO should correspond to elementary par- 

ticles (irreps of the Poincar~ group) in order to apply it to - 

particle physics. 

The simplest way to build a model satisfying these criteria is to use 

the formalism of constrained hamiltonian mechanics, l) The covariant 

hamiltonian is defined from a constraint on the mass operator and, fol- 

lowing Dirac, the constraint is set equal to zero only after the equa- 

tions of motion have been calculated. From the above point 3), it is 

clear that the symmetry of the QRO must be larger than the Poincar~ sym- 

metry and we therefore extend the Poincare symmetry into a relativistic 

symmetry. 2) We choose the following relativistic symmetry: 

pj~,~ @ SO(3,2)S~,F (i) 

where P = P /M and M 2 = P P~. 

The semi-direct product indicates that the intrinsic spin S~ (which is 

not the physical spin) and the operator r transform respectively as a 

second rank tensor and as a vector operator under the action of the total 

angular momentum J. Once the constraint on the mass operator is 
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imposed, Pp no longer commutes with S0(3,2). After the constraint is 

imposed we assume that P~ still commutes with S0(3,2) and therefore the 

symmetry (i) remains. Notice that the hamiltonian is invariant only 

under the Poincar~ group and that the Lie algebra of (i) is exactly the 

algebra defining spin-½ particles in the Dirac theory. In the Dirac 

theory, there is no problem with the constraint (Dirac equation) because 

the four-dimensional representation of S0(3,2) is a degenerate represen- 

tation (only one mass and one spin). The dynamics of our relativistic 

oscillator is very reminiscent of the "zitterbewegung" of the electron. 3) 

Quantum Relativistic Oscillator 

Our QRO has two positions4) : Y , the center of mass position operator 

and Qp, the particle position operator (canonical conjugate to ~ ). The 

difference dp = Y - Q is what we call the internal relativistic coor- 
~ 5) 

dinate and is defined by 

p,o 
= S -- (2) dp Pu M2 

The total angular momentum J ~ can be decomposed in terms of the intrin- 

sic spin S or the physical spin E in the following ways: 

= QpP~ Q~Pp %9 - + S = Y P - Y P + Z (3) p ~ ~ p p~ 

The two spin tensors are therefore related by the equation 

Z = S - d P + d P 
P~ P~ P ~ ~ IJ 

(4) 

The spin can also be described by the Pauli-Lubanski vector 

= ½ ~ P~ZP~ and the definition (2) of d is the only one consis- p p.vp~ 

tent in order to have: 

-w W ~ = ½ ~z ~ (5) 

Our construction of d only allows spacelike oscillations and the phys- p 
ical spin tensor E has only three independent components. Finally 

the hamiltonian of an QRO is taken to be: 

= ~[PpPP - ~--7~ P~£ ~ ] (6) 

1 The coefficient ~ is a Lagrange multiplier and is found to be 
2M 

when the evolution parameter ~ associated to ~ is the proper time of the 

mass. The parameter --~ has units of (GeV) 2. The constraint center of 

on the mass operator is imposed when ~ = 0 on the physical states. 

Using the canonical commutation relation [Qp,P ] = -igp9 and the 

Heisenberg equations of motion to get the proper time derivatives of 

the observables, we obtain: 
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=0 £ =0 
~v Hv H 

9 -- - 1 d 6 =i___ 
H 2a' ~ U 2~'M 2 (Fp - ~ 15%%,_.F,, 

(7) 

Taking the second derivative of d, one finds the standard oscillator 
H 

equation: 

+ 1 d = 0 (8) 
H 4~,2M2 

We then define the canonical conjugate momentum ~ = 2Md of d and 
H P H 

obtain the following relativistic Heisenberg commutation relations5) : 

[d d ] = - i [~ i [d ] ~ -ig (9) 
u' v M 2 ~Hv ~'~v ] ~,2M2 ~v '~v ~ 

The constraint ~ = 0 has been used in order to get the last equality 

and g~ = g~ - P~Pv" 

Representation Space of the Relativistic Symmetry 

In order to choose a basis of the representation space of the relativis- 

tic symmetry (i), we Choose the following complete set of commuting 

observables: P~' M2'^PH F~ ~ ½~Hv~Hv and ~I2~(R) (taken in the rest frame) 

with the eigenvalues PH' m , ~, j (j + i) and J3 respectively. The basis 
2 

vectors are therefore labeled by [~,m ,H,j,j3>. We use irreducible, 

unitary, multiplicity-free representations of SO(3,2) that are charac- 

terized by the minimum value Umin of F ° (or P F ~ ) and by the minimum 

value S of the spin appearing in the representation. The quadratic and 

quartic Casimir operators are then functions of ~min and S and are given 

by7): 

eigenvalue of C 
= -R 3 2 9 

(2) = (~min-2) + S(S + i) - 

min -> S + ~ for S = 0, 

=S+l forSzl 
~min 

eigenvalue of C(4 ) = S(S + i)[-R - (S - i)(S + 2)] (i0) 

The spectrum of F ° is discrete and H takes the values Hmin + n with 

n = 0,1,2,.... By applying a Lorentz boost on the states at rest, we 

induce a representation of the full relativistic symmetry (i). Every 

subspace corresponding to an irreducible representation of SO(3) x SO(2) 

(maximal compact subgroup) determined by a particular set (n,j) now be- 

comes an irreducible representation D(m(n),j) of the physical Poincar~ 

group (with m2(n) = --T n). The complete representation space of our 

QRO is therefore a discrete direct sum of irreducible representations of 
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the Poincar6 group so that every mass level of the oscillator corresponds 

to an elementary particle. These spaces are written as: 

8 D(m(n) ,j) when S = 0 (ii) 
n=0,1,2,... 
j=0,2,4,-., n (n even) 
j=i,3,5,.-" n (n odd) 

and 

1 3 
8 D(m(n) ,j) when S = ~,i,~,2,... (12) 

n=0,i,2,3... 
j=S,S+I,...n+S 

3 
For ~min = S + 1 and S = 0,½,1,~,2... the space (12) is also an irreduc- 

ible representation of a relativistic symmetry based on SO(4,2) 9) (in- 

stead of SO(3,2)). Even though electromagnetic decays seem to indicate 

that a larger symmetry such as SO(4,2) is needed, we will restrict our- 

selves to S0(3,2) since our QRO is not yet coupled to interactions. 

Non Relativistic Limit 

The non-relativistic limit is taken by contracting the Poincar6 group 
1 

and SO(3,2) .i0) The contraction parameter ~ goes to zero and we follow 

a sequence of irreducible representations of the symmetry (i) along which 

the operators Sio , Fi, F ° and Po go to infinity, but such that the fol- 

lowing limits are finite: 

S. F. F P 
lO ÷ ~. 1 + o o _~o ÷ 1 (13) 
mc ' ~'mc ~i ' e' (mc)2 ÷ i , mc 

The Galilean mass m and the non-relativistic hamiltonian H are defined 

by t h e  e x p a n s i o n  o f  P : 
o 

Po = me + ~ + O( ) (14) 
c 

In order to have a well defined representation space at any step of the 

contraction, we establish a one to one correspondence between the value 

of c and the value of the quadratic Casimir oeprator by imposing the 

condition: 

-R = (mc)4~ '2 (15) 

This condition is of course consistent with the contraction (13). 

The results of the contraction are presented in the table (I). The 

Poincar~ group contracts to the Galilei group, SO(3,2) contracts to the 

group of the three-dimensional harmonic oscillator (it contains the 

Heisenberg group and SO(3) as subgroups). The relativistic Heisenberg 
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commutation relations contract into the usual Heisenberg commutation 

relations. The constraint ~ = 0 gives the hamiltonian of the three- 

dimensional harmonic oscillator. 

TABLE I. Contraction of the QRO. 

Fj p + GJi,Gi,M, H, pi 
' U 

SO(3"2)S ,r + SO(3)S. " ~ H(3) 

d + 0 
o 

~i,~j, 1 

÷ 0 o 

o ~(~) 
di + ~i = hi 

i i '~ i 

Z. ÷ 0 
lo 

co 

Z13 + Sij + ~(~)P " ~(~)P = Z. • ~i j j 1 13 

i ~(~) (~) 
[d~,d ] = -~ Z~ + [%i , ~j ] = 0 

i ÷ ~(~) (~)] = 0 
[~ ,z ] - ~,2M 2 Z [ i '~j 

[d ,~] c • ~ (~) ~) 
= -ig~ ÷ [~i '~ ] = i6ij 

~{ = 0 ÷ H = ~-~ + 4m + 2 
4me' 

and eigenvalue of C(4 ) = S(S + i)[-R - (S - i)(S + 2)] 
÷ 

÷ eigenvalue of ~2 = S(S + i) 

o o i 
where Si = Si - Sijk~j~k and S i = ~ £ijkSjk • 

The number of constituents of our QRO is not determined (it could be a 

three-dimensional volume oscillating harmonically) but if we want to get 

two constituents in the non-relativistic limit, we are free to rescale 

the operators d and ~ in such a way that the right reduced mass appears 

in the expression of H. The contraction of the quartic Casimir operator 

leads to the definition of a new spin operator Si" (This operator can 

(~) - c (~)~)) which is the difference also be written as Si = Zi ijk~j 

between the physical spin and the internal orbital angular momentum of 



39 

of the particle. The parameter S characterizing the S0(3,2) representa- 

tions can therefore be interpreted as being the total intrinsic spin of 

the constituents of the oscillator. For S = 0, we get the usual three- 

dimensional harmonic oscillator with no intrinsic spin and the total 

spin is purely orbital; there is also a one to one correspondence between 

the states of the representation space (ii) and the states of a non- 

relativistic oscillator. 

Application to the Hadron Mass Spectru m (Regge trajectories) 

Intuitively, an oscillator is not enough to describe a hadron because it 

could also perform rigid rotations; we therefore complete our QRO by 
12 

adding the term -~- Z Z ~ corresponding to a quantum relativistic 

rotator. II) The general mass formula then becomes: 

2 i 29 2 
m = ~ n + I (j + i) + m o (16) 

We now have to assign states of the different representations of SO(3,2) 

to the different hadrons. Because of the analogy between the minimum 

spin S and the total intrinsic spin of the quarks, the mesons with 

CP = +i enter the representation with S = I, the mesons with CP = -i 

enter the representation with S = 0 and the nucleons, for instance, enter 

representation with S = ~. The strange mesons which are not eigen- the 

states of CP enter the same representation as their SU(3) counterparts; 

the K* mesons and their excitations are in the same representation 

(S = i) as the p and ~ mesons and the K mesons and their excitations 

are in the same representation (S = 0) as the ~ and ~ mesons. These 

assignments are of course not unique and there is a part of subjectivity 
2 

in our classification. We have performed a X computer fit to determine 

the slopes __i and 12; the results are presented in table II 

TABLE II. Fits of Hadrons. 

family ~ , K , p-e , K* , 

number of particles 6 7 19 6 6 

value of S 0 0 1 1 1 

1 2 
- -  in (GeV) 0.82 0 84 1.03 i.ii 1 00 

12 in (GeV) 2 0.24 0.22 0.02 0.02 0.05 

2 
× 2.0 1.6 2.0 0.8 2.0 

, N 

12 

½ 

1.05 

0.01 

7.4 
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In figures (i) and (2), we give the representation spaces and the dif- 

ferent particle assignments for the ~ and p-~ families respectively. 

j = 5 12.28p 2.351 12.50 

j°3 169~ 1671 221 i2 

'=~ ~.~Z ~.~~7 ~-~° ~~ I~.~" I I ~.~ ~~ ~.~ 1 

I °o:q i I I i '.'° 
n=0 n=l n=2 n=3 n=4 n=5 

Fig. 1 p-~ family.The predicted masses in GeV appear on the left side of each box. 
The spin-7 meson M(2.75) is not displayed here.The particles with I = ! are 
listed below the particles with I = 0 ; they are all included in the fit. 

j =3 

j=2 

j=1 

I 1.756 2.172 
A 1.680 A 2.100 

I 1.146 
B 1.235 

j = 0 1 0"137 1 1"285 1"813 1 
w 0.137 w 1.300 w 1.770 

Fig. 2 

n= 0 n = I n= 2 n = 3 n = 4 

z family.The predicted masses in GeV appear at the top of each box.The 
states of this representation of SO(3,2) are identical to the states of 
the three-dimensional harmonic oscillator. 

The above fits have three important consequences. First, the rotational 

excitation bands of the mass spectrum are much smaller than the radial 

bands since ~2 is in general much smaller than ~,. This excitation 

result is analogous to the situation in molecular and nuclear physics. 

Second, the mass formula (16) leads to linear Regge trajectories for 

the subspace n = j - s (subspace corresponding to the Regge trajectory) 

and an approximate mass formula can be written for this subspace as: 
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2 
m ~ --7 j + j = s,s + i,..- (17) 

1 12 
Third, the slopes -~7 and seem to be SU(3) invariant. The monet 

p-e, K* and ~ has the same mass squared splittings in the radial and 

rotational bands. If we interpret the i (1440) and n (1.275) as being 

the first radial excitations of the n' and ~ mesons respectively, the 

monet 7, n, K and ~' then also has the same slopes ~ and 12 within a 

small uncertainty. 

The situation is not as clear for the baryons because the H family is 

very incomplete. Moreover the Z family splits into two subfamilies; 

half the Z particles enter the octet and the other half enter the de- 

cuplet. There is, anyway, some good hope to find the right particle 

assignment to verify the SU(3) invariance of the slopes. 
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Abstract 

A way to realize a dynamical group in terms of a path integral is 

illustrated by using the Poschl-Teller oscillator. 

I. Introduction 

"No definite connection is known at the present time between the use of De Sitter 

and conformal groups as dynamical groups or spectrum generating groups and their use 

as 'space-time-scale' groups," said Barut I at the Boulder Conference on De Sitter and 

Conformal Groups in 1970, and added, "The conformal group in the 80(4,2)-interpretation 

has been found to describe the Dirac particle, the H atom and a model for proton ..... " 

The SO(4,2) symmetry underlying electrodynamics and other massless field theories is 

a geometrical symmetry which is directly related to space-time transformations. The 

same S0(4,2) group structure appears to be significant at the dynamical level of com- 

posite systems as well. Fifteen years after the Boulder Conference, we still have no 

clear understanding of their connection. What we are certain of is that the S0(4,2) 

dynamical scheme works rather well in quantizing composite systems. 2 Recently, it has 

also been found that the dynamical group idea is effective in reducing a nontrivial 

path integral into a soluble path integral~ -s 

The dynamical group S0(4,2) contains SO(3)xS0(2,1) or S0(3)xSO(3) as a subgroup. 

The SO(3) commonly involved in the above two choices is a geometrical group represent- 

ing the spherical symmetry in space, whereas the remaining subgroup S0(2,1) or SO(3) 

is nongeometrical and to generate the energy spectrum of a composite system. A path 
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integral for a system of S0(2,1) has been considered, @ which is basically equivalent 

to a Schrodinger equation reducible to a confluent hypergeometric equation. In this 

paper, we wish to propose a way to realize the dynamical group S0(3) in terms of a 

path integral. For illustration, we choose the P~schl-Teller oscillator 6 in which 

interest has recently been revived. 7 First, we demonstrate the S0(3) structure of the 

oscillator. ~B Then, we convert Feynman's path integral for the one-dimensional system 

into a path integral on S 3. This path integral gives us not only the correct energy 

spectrum but also the properly normalized wave functions. 

II. Dynamical Group of the P~schl-Teller Oscillator 

The Hamiltonian for the P~schl-Teller oscillator is 6 

H =~-~1 p2 + ½ VO[K(K - 1) csc2ax  + %( ~ - 1) sec2ax]  ( 2 . 1 )  

where V o =  a2fi2/M, < > 1 ,  % > 1 ,  xE [ 0 , ~ / 2 a ] ,  and a i s  a c o n s t a n t .  Here,  f o l l o w i n g  

r e f .  8, we d e m o n s t r a t e  t h a t  t h i s  o n e - d i m e n s i o n a l  o s c i l l a t o r  has  t he  S0(3)  d y n a m i c a l  

symmetry. 

The Sch r~d inge r  e q u a t i o n  f o r  ( 2 . 1 )  can be w r i t t e n  as  s 

d 2 1 
{d~- ~[(m+ g+ ½)(m + g - ½)csc2½8 +(m - g + ½)(m-g- ½)sed½e] +h} 

where we have set K =m+ g+!2, % =m - g +½, h =ME/2a2~ 2 and 8 =2ax s [ O , ~ ] .  

introduce three operators, 

m=O 

(2.2) 

Now we 

cos~ ~____ + ½isin~cot0 (2.3) L l=-iCos~ cot~-isin~-isin9 2, 

t ~ $ sin~ ~ - ½icos~cote (2.4) e 2 = - i sin~ co ~ + i cos~-~- - i sin---~ ~- 

e 3=-i~T (2.5) 

which form an S0(3) algebra, 

[L i, Lj] = i L k cyclic in i, j, k. 

Let ~%m be a simultaneous eigenstate 

Cm ~m = E(£ + 1) ~m 

(2.6) 

of the Casimir operator Cm =~2 and L3, so that 

(2.7) 
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L3 # %m = m ~%m 

where ~= 0, i, 2, ...; m = ±i, ±2, ...±%. 

equation (2.2) as 

[C m - A+ ¼] ~m = 0. (2.9) 

If we identify ~m with ¢%m, we immediately get 

A - ¼ = ~(~ + i), or E = (2a2h2/M)(%+ ½f. 

Since ~= Jm] + n (n = 0, i, 2 .... ), we obtain the well-known energy speetrum~ '9 

E n = (a2N2/2M)(2n + K + kY. (2.10) 

Thus, we see that although the system is one-dimensional there is an underlying SO(3) 

symmetry in its dynamics. 

(2.8) 

Using (2.3)-(2.8), we can express the wave 

III. Path Integral Realization of the P~schl-Teller Oscillator 

As we have seen above, the spectrum generating group of the P~schl-Teller oscil- 

lator is S0(3), which is independent of the apparent space symmetry of the Hamiltonian 

(2,1). Since S0(3) is locally isomorphic to SU(2) and the group manifold of SU(2) is 

homeomorphic to S 3, we attempt to realize the oscillator in a path integral on S 3 . 

The Lagrangian for this system is given by 

L = ½M~ 2- ½Vo[< (<- i) cs~ax + I(I- i) se~ax ], (3.i) 

for which Feynman's path integral may be expressed as 

i N-I N N M ~ 
K(x",x';T)=lim f ~ exp[~Sj] ~ 12~i~ ] j~= dxj (3.2) 

N +°° j=l 1 1 

where 

Sj = 2~ (&xjf - ½~ VO[K(K- i) ~c2axj + X(X- l)sec2axj ]. (3.3) 

In the above, we have used the notations: xj =x(tj), t'=to, t"=tN, tj-tj_ 1 = ~ , 

~2 
T= t" - t', csc @j = csc~csc@j_l ' etc. As before, we set @j= 2axj and rewrite 

(3.2) as 
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N i N [Ms~ _I N-I 
K(x",x';~):2a~i~ f ~ ex, p [~Sj ]  ~I ]~ ~ d~] 

N-~o j=l j=l j=l 
(3.4) 

The short time action (3.3) has also to be expressed in terms of O-variables. As is 

well-known, terms of O(gz+6) with 6 > 0 are unimportant in a short time action, and 

(A~)~£ , so that [-~(AO) ~ +8(AO ~] is equivalent to [-~(AOf+ (3B/4)~ -2] for large 

. Hence, 

S-3 M (1 CosZA ~ - ~  ~3~ 8 T e  ½eVo[<(< ~ :~ ~=~ . . . . . .  l)csc ~Oj + %( X- i) see50j] (3.5) 

Next, using the asymptotic formula valid for z large and p an integer~ 

2W 

! 2 f exp[ip~- z(l-cos~)] d~ = (2~/z)2exp[-(p -½)/2z], 
0 

(3.6) 

we generate two angular variables ~ and B from the last two terms of (3.5) as 

2~ 

exp[ iV°<(< - I )~ ]  : [Mcos 283 ]~ f exp[ip mj + ~ c~s:½@a(1 - costa j ) ]  de j  , 
JSco~s:½ Oj 2wia~a o a T~g J 

iVok(%-!)e ~ Ms~n'½0 ~½ f~ iM ~ ,i 
exp[--~2T~ j J : [ ~ J  ]oexp[iq Bj+ a:jsgs In~oj(l-cOs~j)] d ~j, 

where p=<-½= m+g and q= X-½ = m-g are assumed to be positive integers. Substi- 

tuting of these results into (3.4) yields 

N N r M .3/2 N-I 
K(x",x';T)=a(sinO'sinO")½1im f ~ exp[~Sj] ~ [~--~= J ~ (2sinOjdOjd~jd~)(4d~"d~") 

N ÷c° j=l j=l 8~i~a g j=l 

(3.7) 

where 

~j M (l-cos½~)-~=JS = -- 8---~--+ 5 (K - ½)~ J + ~ ( I - ½)Bj 
a2E 

(3.8) 

with cos½% = ~ 21 cos ~%cos~j + s%~ ½~cos~ The newly introduced variables ~j and 

B j may be converted into Euler angles #j and ~j by 

~j =½(A~j + ACj), Bj =½(&¢j- A~j) (3.9) 

and 
2~  2~  2~  2W 

/ / d 3 .  
0 0 - 2 ~  

(3.10) 
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As a result, we obtain 

! 

K(x",x' ; T) = 2a(sinO'sin@") 2 exp[- iENT/8M] 

27[ 2T[ 

x f d$" f d,"exp[½i(<-l)$"+½i(K+X- 1),"]K(@",,",~';8', 0,0;%) (3.11) 
0 --27T 

where 

N N N-1 
K(8",$",@";8',0,0;T):lim f ]] exp[~Sj] =~i [M/8~iNa:g]3/2 ~ (sinSjd@jdSjd@j) (3.12) 

N+ oo j=l j j=l 

with 

~ j= (M/a :E ) ( I  - cos½~) (3.13) 

~ 2 1  . and cos½Qj = cSs2½ejcos½(A~j +A~#j) + sln~@j sln½(ASj - Ak~j). The path integral 

(3.12) is nothing but an SU(2) path integral, which can be evaluated and has been given 

by s 

oo . 2 . 2 

ff(~;T) = (16~2)-i [ (2J+l)cl2j(cos½~)exp[_~j(j+..Z)_T 13z~a%. (3.14) 
J=Jo 

where Jo: max{ ½1< -%1 , ½1 <+%- II}' and 

J 
C12j(cos½~)= ~ e - j~$' '  e -iv@'' dJ* (cosS')dJ,v(cos@").  

, V=-J ]J '~ 
(3.15) 

Finally, substituting (3.14) into (3.11) and completing the integration, we arrive at 

! oo  

K(x",x';Y)=2a(sin2ax' sin2ax") 2 [ (2n+<+%) 
n=0 

× exp[-(iN~/2M)(2n+<+%)=T] d J* (2ax') d J ~,~ ,v (2ax") (3.16) 

I/ where J=n+~< +% - I), U=½(<-% ), v=½(K+ %-1) and the @-variable has been trans- 

formed back into the x-variable. From (3.16), we can immediately read off the energy 

spectrum and the normalized energy eigenfunctions 9 

E n = (a2N2/2M)(2n +< +% (3.17) 

! n+½(K+ %- i) 
~n = [a(2n + < + %)sin 2ax] 2 A ~i I + l)2ax) • 

~(<-%), 3(< ~- 
(3.18) 

The wave functions (3.18) are consistent with, but differs by a phase factor from the 

result obtained by Nieto. 9 
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IV. Conclusion 

By taking the P~schl-Teller oscillator as an example, we have explicitly con- 

structed a path integral whichaccommodates a dynamical group. Apparently, the one- 

dimensional Hamiltonian (2.1) is not scale-invariant. However, the spectrum generat- 

ing group S0(3) S0(4,2) can be realized as a path integral on S 3. Thus, we conclude 

that a certain dynamical group can be realized in terms of a path integral and that 

the dynamical group idea is helpful in solving Feynman's path integral for a non- 

trivial system such as the Poschl-Teller oscillator. 
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POLYNOMIAL IDENTITIES ASSOCIATED WITH DYNAMICAL 

SYMMETRIES 

Mircea Iosifescu and Horia Gcu~arw 

Department of  Theore t i ca l  Phys ics ,  Central  I n s t i t u t e  of Physics 

Bucharest ,  P.O.Box MG-6, ROMANIA 

The existence of relations between the generators of a 

linear representation of a Lie algebra is a well-known fact and 

has been pointed out in connection with various physical problems 

(e.g. / I / - / 7 / ) .  

During the last f i f teen years, several methods for the 

construction of such ident i t ies have been deduced /8/-/14/.These 

methods have in common the fact that they are aimed at determin - 

ing the polynomial ident i t ies satisf ied by a give n linear repre - 

sentation. The idea which underlies several of them (e.g. /10/, 

/12/) is the following : 

Given two representations PA and Pn of an n-dimensional 

reductive Lie algebra L acting in the linear spaces V A and V~, 

respectively, the operator 

n 
A = ~ pA(ei) ~p~(e i )  ( I )  

i=I 

}n {e i n can be defined ; {e i i= 1, }i=1 are bases in L dual with res- 

pect to a Qondegenerate bi l inear form on L. The operator A com- 

mutes with the direct product of the two representations PA and 

p~ of L. I ts  eigenvalues label thus the components into which 

the direct product PA ® P~ decomposes. The number of nonequiva- 

lent irreducible components of PA ® P~ is equal to the degree 
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of the minimal polynomial p(A) satisf ied by A. The polynomial 

relations satisf ied by one of the representations, PA say, are 

obtained by taking the matrix elements of the relation p(A) = 0 

with respect to the basis vectors in V~. 

A different approach of the problem has been derived in 

/15/, /16/. In /15/ a method allowing the determination of all 

the ident i t ies satisf ied by the generators of a Poisson bracket 

realization (PBR) of a Lie algebra has been pointed out ; these 

polynomial ident i t ies are obtained by equating to zero the vec - 

tors belonging to subrepresentations of the symmetric part of di- 

rect powers of the adjoint representation (ad(~) k)s. The isomor- 

phism existing between the extensions of the adjoint action to 

the symmetric algebra S(L) and to the algebra of polynomials de- 
w 

fined on L allows one to conclude that the equations provided 

by the polynomial ident i t ies (written in L *) are invariant 

under the co-adjoint action and describe thus an in t r ins ic  pro- 

perty of the Lie algebra L. Thus for a suf f ic ient ly  large set 

of powers (k} these equations wi l l  provide all the equations 

which can be satisf ied by the generators of a PBR. As the symme- 

t r izer  intertwins the extensions of the adjoint action to S(L) 

and to the universal enveloping algebra U(L), the symmetrization 

of the ident i t ies obtained for the Poisson bracket realization 

of a Lie algebra L leads to ident i t ies for the linear represen - 

tations of L. 

Let us observe that the ident i t ies satisf ied by the gene- 

rators of a realization of a dynamical (or of an invariance) Lie 

algebra of a Hamiltonian system are constraints imposed on the 

Hamiltonian system by i t s  symmetry. 
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The procedure descr ibed above has been appl ied in / 15 /  

to the e x p l i c i t  de te rmina t ion  of the second-degree polynomial  

i d e n t i t i e s  which cha rac te r i ze  the PBR's of  the B 2 ~ C 2 and 

O 3 ~ A 3 Lie algebras. 

In a subsequent work /16/ (cf. also /17/)the second- 

degree irreducible tensors tL,oES(L ) which transform under sub- 

representations of (ad ~)ad) s of the Lie algebra L have been 

determined for the following semisimple Lie algebras: An(n ~ 3), 

Bn(n ~ 2) , Cn(n ~ 2), Dn(n ~ 5). The corresponding tensor ope- 

rators, TL, a are obtained from tL, ° by symmetrization. The equa- 

tions TL,~(p) = TL,o(x l ,  x2 , . . . ,  x n) = 0 (x i = generators of the 

representation p) obtained in this way provide the second-degree 

polynomial ident i t ies sat isf ied by the representations p of ~. 

lhese polynomial ident i t ies contain an amount of informa- 

tion concerning the l inear representations p (the generators of) 

which satisfy them. This has been proved, for instance, in papers 

/18/, /19/ in which for a class of l inear representations of the 

Lie algebras so (2n,R) and sp(2n,R) which appear in Gross-Neveu 

models /20/ and in the study of col lective motion in nuclei /21/, 

respectively , boson realizations of the Holstein-Primakoff-type 

have been obtained from the corresponding polynomial ident i t ies.  

One of the purposes of the present note is to obtain spe- 

c i f i c  information concerning the representations p (of the Lie 

algebra L) which satisfy the polynomial ident i t ies TL,o(p ) = 0 . 

This is i l lus t ra ted by the subsequent theorem in which the repre- 

sentations p which sat isfy the second-degree polynomial identi - 

t ies TL,o(p ) = 0 deduced in /16/ are determined for the Lie alge- 

bras sp(2n,C) and so(2n,C) .  
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Before stating the theorem, let us remind that, for the 

semisimple Lie algebras of types Cn(n ~ 2) and Dn(n ~5), the 

Clebsch-Gordan series of (ad ~) ad)s are /22/: For algebras of 

type Cn(n ~ 2) Icf.explanation to Table I ) :  

(ad(~)ad)s = (0)(~)(^2) (~)(4^i)(~)(2^2) (2) 

For algebras of type D n (n ~ 5) : 

(ad (~ ad)s = (O)(~)(Z^1) ~ (A4) (~)(2A2) (3) 

The expressions of the tensor operators TL, o, transforming un- 

der the subrepresentations o of (ad ~ ad)s (for L = Cn,Dn) 

pointed out above, are given in the Appendix. 

Theorem. Let TL, o EU(L) be the second-degree tensor 

operator which transforms under the subrepresentation o of 

(ad (~) ad) s of the Lie algebra L. Let L be one of the Lie 

algebras sp(Zn,C) and so(2n,C). The finite-dimensional repre 

sentations ~ of L on (the states of) which TL, ° vanishes, i .e. 

for which TL,o(p ) = O, are those contained in Table 1: 

TabZe I 

Lie Representation a under Representation p for 
algebra which TL, c transforms which TLjo(p) = 0 
L 

(A 2 ) (kA n ) 
sp(2n,C) (4AI) (AI) 

(2A 2 ) 

(2^ 1 ) (kAn_ 1 ) 

(kA n ) 
so(2n,C) 

(^4) (k^1) 

(2A 2 ) (Anll)(A n ) 
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In Table 1 A i denotes the highest weight of the fun- 

damental representation (Ai) (i = 1,2, . . . .  n) of the Lie algebra 

L under consideration. 

The proof is based on the observation that, for a f i n i -  

te-dimensional l inear space V , in order to have p 

T(A ) (x 1, x2, . . . ,Xn) v = 0 (4) 

fo rany  component of T(A ) and any VEVp , i t  is suf f ic ient  to 

prove that 

T(A ) (x 1, x2,...,Xn)V = 0 (5) 
p 

for any Co,orient of T(A ) where vp is the vector corresponding 

to the highest weight of the representation p . To do that,the 

polynomial ident i t ies TL, ° = 0 have been expressed in a Cartan- 

Weyl basis and the action of the generators of the Cartan sub - 

algebra and of the raising operators upon v have been taken p 

into account. 

Besides the results summarized in Table 1, Eqs. (5) pro- 

vide also information concerning the highest-weight vector v . p 

Detailed proofs have been given in /23/, /24/. 

I t  has been proved /25/ that for the semisimple Lie alge- 

bras C n and D n the following direct products decompose i n t o  a 

direct sum of two nonequivalent irreducible representations : 

For Lie algebras of type Cn: 

(AI) (~)(mAn) = (At+ man) (~ (An_ 1 + (m-1)An) (6) 

For Lie algebras of type Dn: 

(mA I)(~) (An_ 1 ) = (mAl+An.1) (~((m'I)AI+A n) 

(m^l)(~)(An) = (mA 1 + An) (~((m-1)A I + An.i) (7) 

~^1) (~(mAn-1) = (A1 + mAn-l) ~((m-1)An-1 + An) 

(^ i )  (~)(mAn) = (A 1 + man) (~(An_ I ÷ (m-l) An) 
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where m are arbitrary positive integers. Okubo's method /12~ 

applied to the direct products (6) and (7),proves the consis- 

tency of the statements of the theorem with the sets of equa - 

t i o n s  (6)  and ( 7 ) .  

A second purpose o f  t h i s  note i s  to draw a t t e n t i o n  upon 

a mapping / Z 6 /  which p resen ts  s i m i l a r i t i e s  w i t h  the moment map 

/ 2 7 / ,  / 28 /  and the p r o p e r t i e s  of  which make i t  use fu l  in  the 

s tudy  of  G-man i fo lds  and, in  p a r t i c u l a r ,  f o r  the d e t e r m i n a t i o n  

of  po lynomia l  i d e n t i t i e s  which c h a r a c t e r i z e  a Poisson Bracket  

R e a l i z a t i o n .  A p p l i c a t i o n s  of  t h i s  mapping to the conformal  a lge -  

bra w i l l  be po in ted  ou t .  

Let  L be a L ie  a lgebra o f  a L ie  group G , { x i , i = l , . . . , n }  
n 

be i t s  gene ra to rs  and [x  i ,  x j ]  = ~ k be i t s  s t r u c t u r e  re -  
k=l  c i j x k  

] a t i o n s .  

Let  M be a man i fo ld  endowed w i t h  a Poisson a lgebra  A and w i t h  

a G -ac t i on  on A / 2 4 / .  The Poisson produc t  in  A i s  denoted by 

{ , } . Let  R : L + A be a PBR of L 

g : x i + fxiEA, R : [x i ,  x j ]  ÷ { f x i ,  fx j }  

which is supposed to have the equivariance property 

Let V 

tation 

(8) 

fAd(g)xi(m) = fxi(g' lm) (9) 

be a G-module on which G acts by the linear represen- 

U and let ~ be the corresponding representation of 

L on V : ~(xi) = ~ U (exp t x i )  

D e f i n i t i o n  ~ The mapping K : mEM + K(m)E End V 
n 

K(m) = i~1 fxi(m) ~(xi) (meM) 

i s  de f ined  by 

(10)  



54 

where x i is the element dual to x i with respect to a nondege- 

nerate b i l inear  Ad-(nvariant form ( , ) on L. 

The mapping K has the fol lowing eguivariance property 

/26/ : 

Theorem. For any gEG and any mEM 

K(g,m) = U(g) K(m) U(g -1) (11) 

where g,m denotes the action of gEG upon mEM. 

The equivariance property (11) of the mapping K allows 

the determination of the algebraic iden t i t i es  sat is f ied by the 

generators of the PBR (8) which have been used in the de f in i t i on  

of K(m). Indeed, re lat ion (11) keeps val id i f  K is replaced by 

a polynomial in the indeterminate K. Thus i f  a polynomial rela - 

t ion P(K(m)) = 0 can be proved to be val id for a given point mEW, 

i t  w i l l  be val id for a l l  the points which are on the G-orbit 

through m. Hence the algebraic relat ions which resul t  by taking 

the matrix elements of the re lat ion P(K(m))= O, characterize the 

res t r i c t i on  of the PBR to the G-orbit through m. 

Let us observe that K(m) always sat is f ies  a polynomial 

re lat ion P(K(m))=O (the Cayley-Hamilton theorem); th is leads to 

a proof for the existence of polynomial relat ions between the 

generators of a PBR. 

I t  is essential to remark that the equivariant mapping 

K : M ÷EndV reduces the nonlinear problem of the c lass i f i ca t ion  

of G-orbits on M to the l inear  problem of the c lass i f i ca t ion  

of G-orbits in EndV, which can be solved more easily and for 

which some general solutions exist  in the l i t e ra tu re .  This w i l l  

become evident from the examples new to be mentioned. 

We shall give two examples of mappings K which allow 

one to explo i t  the exist ing c lass i f i ca t ions  of G-orbits on EndV 
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in order to obtain polynomial iden t i t ies  for the PBR defined 

on M . In these examples ( in which G wi l l  be the conformal 

group ) the G-modules are fundamental modules of G and the 

polynomial i den t i t i es  sat is f ied by the operators from the 

image of K are of second degree; the manifold M is the dual 

space L* of L endowed with the Kir i l lov-Kostant-Souriau 

bracket and with the co-adjoint action of G on L*. 

Let L = so(4,2)~su(2,2). There exists a c lass i f i ca t ion  

of the orbi ts of SU(2,2) in EndV^1 /30/ (VAt is called the 

twister  space) and a c lass i f i ca t ion  of the orbi ts of S0(4,2) 

in EndV^2 /31/ ,  /32/. Hence, for the Lie algebra so(4,2) 

su(2,2), we can give two examples of K-mappings , Ki (i=1,2) 

which d i f f e r  by the image space EndVA( ( i  = 1,2). 

In both cases we shall use for the so(4,2) generators 

the following vectorial notations 

L i = M jk ( i , j , k  = cycl ic permutations of 1,2,3), A i = Mi4 

Bi = Mi5, Ci = Mi6 ( i  = 1,2,3), B 4 = M45 , C 4 = M46, H = -M56, 

the generators Mij = -Mji ( i , j = l  . . . .  ,6) being supposed to 

sat is fy  the Lie relations 

[Mij ,Mkl]  = -gikMjl - gjiMik + gi iMjk + gjkMil (12) 

with g11:g22=g33=g44=-g55=-g66=1 and gij=O for i # j .  

The corresponding dual elements of these generators, with res- 

pect to the Cartan-Kil l ing b i l inear  form, are L i = L i ,  A i = A i 

( i  = 1,2,3), H = M, B j = -B j ,  C j = -Cj (j = 1,2,3,4). 

The matrix K1(m ) (mEL*) is defined by relat ion (10) in 

which the representation ~ is generated by 
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, ~(AR) = ~(LK) = 0 io k o k 

o) 
~(Bk) = ½ , ~(Ck) = 

0 o k a k 0 

(k = 1,2,3) 

(k = 1,2,3) 

~(B4) = ½ ' ~(C4) = , ~(M)= 
1 0 0 -1 I 0 

Denoting the coordinate functions of a point mEso(4,2)* 

by the same let ters as the corresponding generators of so(4,2) 

(c f . /15/ )  and reminding that the coordinate functions generate 

a PBR with respect to the Kiril lov-Konstant-Souriau bracket, we 

obtain for K1(m) the expression 

½ -(X-~).~ +(B4-M)I 2 (B-iZ) o -C41 2 

K1(m)= 

where by I n we have denoted the n-dimensional unity matrix and 

by X'Y the scalar product between X and ~. 

Then, for the six-dimensional complex orbit  nr. XXIV from 

/30/ we obtain that Kl(m ) sat isf ies the second-degree matrix 

equation 

Kl(m) 2 + 2i~Kl(m ) + 3~214 = 0 (14) 

the matrix elements of which lead /26/ to polynomial ident i t ies 

obtained previously ( /15/ ,  relations (3.24-3.30)). 

The second case, in the expression (10) of the matrix 

K2(m ) the representation ~ wi l l  be the natural, six-dimensional 

representation of so(4,2): ~(Mij ) = Mij, where 
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Mij = e i j  e j i  = -Mji (1<i<j<4), M56 = -e56 + e65 = -M65, 

Mi~ ei~ + e~i = M i (1<i <A" 

The matrix K 2 is 

~= 5,6)and (e i j ) k l  = ~ik6j l  . 

K2(m)= 

0 -L 3 L 2 -A I B 1 C 1 

L 3 0 -L 1 -A 2 B 2 C 2 

-L 2 L 1 0 -A 3 B 3 C 3 

A 1 A 2 A 3 0 B4 C 4 

B I B 2 B 3 B 4 0 -M 

C 1 C 2 C 3 C 4 M 0 

(15) 

and i f  we choose m such that K2(m ) is of the form ~M12+BM34+YM56 

(~=B=y) in the notations of /32/ then 

K2(m)2 = ~216 (16) 

The matrix elements of th is equation lead also to polynomial iden- 

t i t i e s  obtained in /15/.  

The polynomial iden t i t ies  which result  from equations (14) 

and (16) (and which are sat is f ied by the coordinate functions in 
* )* 

L = so(4,2 ) are equations of manifolds invariant under the 

co-adjoint action of G, t~ which correspond, through the mapping 

K, G-orbits in EndVA1 and EndVA2,respectively. 
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APPENDI X 

A} The ~eeond-deg~ee,, t e ~ o ~  tL t  o ~o~ t he  Lie atgebra ~p(tn,C), ..... 

Let gi j=6i, j+n - 6i+n, j ( i ,  j = l , . . . , 2n )  and let 

2n 
Sij = Z (gikekj-gkjeki) ( i , j , 1 , . . . , 2 n )  

k=l 

be the generators of the algebra sp(2n,C) (Si j=Sj i)  with the 

structure relations 

[Si j ,Skl ]  -- gkjSil - gilSkj - gikSjl + gljSki 

The expressions of the second-degree tensors t o , which trans- 

form under the representations o of sp(2~,C) into which de - 

composes (ad(~)ad)s(fOrmula (2)), are obtained by projection 

from the generic element SpqSrs. The corresponding tensor ope- 

rators T o are obtained from t o by symmetrization i .e. by 

replacing products by anticommutators. We obtain 

I + ~ gj iglkSliS j t(o) = 8n(2n+1) (gPsgqr gPrgqs)i, ,k, l  k 

1 
t(A2) = - 4(n+1i i ! j  gJi(gPsSiqSjr+gPrSiqSjs+gqrSipSjs+gqsSipSjr 

2n+I t( 
n+-TI- o) 

1 
t(4A1 ) = ~ (SpqSrs + SpsSrq + SprSqs) 

t (2^2)  = ~ ( 2 s  s . + n t pq rs " SpsSrq SprSqs) ~ (0) 

I 
+ ~ i! j  gJi(gpsSiqSjr + gPrSiqSjs + gqrSipSjs+gqsSipSjr) 
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B) The ~eeond degree . . . . .  t e n ~ o ~  ~Lt ~ ~o~ the L ie  a lgeb ra  ~o(~M,C) 

The structure relations of so(2n,C) are relations (10) 

with gi j  = 6¢j and i ,  j= l  . . . .  ,2n. The second-degree tensors t o, 

which transform under the representations o of so(2n,C) into 

which decomposes (ad(~)ad)s (formula (3)), are obtained by pro- 

jection from the generic element MpqMrs. The corresponding ten- 

sor operators T O are obtained from t o by symmetrization. De- 

noting 
2n 

ps = i!l MpiMis 

we obtain 

1 2n 
t(0 ) = Zn(Zn.i) (6qr6ps - 6pr6qs ) i ! j= iMi jMj i  

1 
t(2A1 ) = 2(n-1) (6qr~ps + 6ps~qr 

2n-1 t( 
- 6prUqs " 6qsUpr) " n--6zT - 0) 

t(A4) - ~(MpqMrs + MpsMqr + MprMsq) 

1 
t ( 2 ^ 2  ) = ~(2MpqMrs - MpsMqr - MprMsq ) 

" ~ i ~ ( 6 q r U p s  +~psUqr- 6prUqs - 6qsUpr) + n--~_n t(0) 
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DE - SITTER REPRESENTATIONS AND THE PARTICLE CONCEPT, 

STUDIED IN AN UR-THEORETICAL COSMOLOGICAL MODEL x) 

Th. G6rnitz and C. F. v. Weizs~cker 

Arbeitsgruppe Afheld in der Max - Planck - Gesellschaft 

Bahnhofplatz 4, D - 8130 Starnberg, Germany 

Abstract: The theory of urs (basic two-valued observables) is 

used to describe particles in cosmic space-time. Cosmic posi- 

tion space is described as S 3, interpreted as a homogeneous 

space of SU(2). An expanding model of the universe is locally 

approximated by de Sitter spaces. Irreducible representations 

of the de Sitter group are explicitly constructed in ur theory. 

From these, Poincar~ group representations in Minkowski space 

with well-defined rest mass are deduced by a special rule of 

contraction. 

i. Ur - Theory and Cosmology 

We use the terms a b s t .r a c t q u a n t u m t h e o r y 

for the universal laws of quantum theory in Hilbert space, and 

c o n c r e t e q u a n t u m t h e o r y for the descrip- 

tion of objects as they really exist in the world./I/ Abstract 

quantum theory includes the universal law of dynamics: the ti- 

me dependence of states is described by a one-parameter unita- 

ry transformation group in the Hilbert space. Concrete quantum 

theory comprises the existence of particles in a 3,l-dimen- 

sional space-time with relativistically invariant interaction 

laws. We call u r h y p o t h e s i s the assumption that 

all state spaces occuring in concrete quantum theory can be 

~2!Y~_!~2_~2~ products of two-dimensional complex vector 

X)Work supported in part by the Deutsche Forschungsgemeinschaft 
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spaces which are defined by one unique type of observable, 

called Ur - Alternative (e.g. original alternative) in German; 

the abstract object corresponding to this alternative is 

called the ur. We call u r t h e o r y the study of the pre- 

misses and consequences of the ur hypothesis!/I/'- - 
ch. 9 and i0) 

The ur theory will have to test two conjectures: 

The s u f f i c i e n c y c o n j e c t u r e (SC): The 

ur hypothesis is sufficient for deducing the complete concrete 

quantum theory from abstract quantum theory. 

The t r i v i a 1 i t y c o n j e c t u r e (TC): The ur 

hypothesis is trivial in the sense of being a necessary 

concequence of those postulates from which abstract quantum 

theory itself can be reconstructed. 

SC, the sufficiency of the ur hypothesis, may seem to be a 

very daring assumption. In order to confirm it we would have 

to deduce from the quantum theory of an arbitrary number of 

urs 

a) the existence of a 3,l-dimensional space-time 

b) the existence and properties of all known particles and 

fields. 

We suppose to have solved problem a) in /i/ chapter 9, as 

far as space can be described as flat or constantly curved. 

The basic idea is to interpret a symmetry group of the ur, 

SU(2), as defining a real 3-space in which it acts as an 

SO(3), and which is hypothetically treated in the ur theory as 

the position space of physics. The solution of problem b) 

cannot be easier than a unified theory of elementary particles 

(/i/, chapter i0). The present paper describes a special 

model, not contained in /i/, in which we can formulate an 

ur-theoretical approach towards problem b). 

In any new fundamental theory there occurs a reversal of the 

historical order of some arguments. We use two well-known ex- 

amples which will turn out to be relevant again for ur theory. 

Astronomy, the most ancient exact natural science, was 

from antiquity down to Kepler a morphological theory of 

planetary orbits, be it around the earth or around the sun, 

completed by the morphological cosmology of a finite spherical 

universe. General laws prescribed the mathematical form of the 

orbits as built from circles or, finally, as ellipses. These 

shapes were different from those of terrestrical motions. 

Newton's mechanics was not a "great", i. e. additive, but a 

"radical", i. e. reductive unification. In astronomy it 
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permitted for the first time to ask and answer the question 

why and to what approximation planets should have mathemati- 

cally well-defined orbits at all. Historically the orbits were 

the way towards general mechanics; in the new theory mechanics 

was the reason why there had to be orbits. 

Similarly, the quantum theory of the atom was a radical 

unification of mechanics and chemistry. Bohr's correspondence 

principle presupposed the good approximate macroscopic validi- 

ty of classical physics and paved the way towards a consistent 

quantum theory. Quantum mechanics reversed the argument and 

explained classical mechanics as its limiting case. 

Ur theory again pressuposes the good approximate validity of 

two earlier concepts: of the v i s i b 1 e u n i v e r s e 

and of p a r t i c 1 e s . The high degree of homogeneity and 

the systematic expansion of the visible universe has permitted 

to treat it approximately as one large physical object. Its 

history is described in the semi-empirical , semi-speculative 

science of cosmology. This science presupposes general relati- 

vity which was conceived as a theory of a locally defined 

field. On the other hand the concepts of mass-point particles 

and/or localisable fields were presupposed by most models of 

elementary particle theories; a string in a high-dimensional 

space is no more than a generalisation of the particle con- 

cept. An additive unification of the concepts of universe and 

particle has begun to exist in the description of the earlier 

phases of cosmic expansion. Both concepts presuppose the 

validity of the concept of space-time. 

Since the ur theory claims to derive position space from the 

quantum state space of the binary alternative, it is essen- 

tially a radical unification of cosmology and particle theory. 

A single ur, containing no more than one bit of information, 

cannot possibly be localized in the universe. The simplest mo- 

del of cosmic space in the ur theory is the largest homoge- 

neous space of the group SU(2), that is the group itself, con- 

sidered as a topological and metrical space. It is the S 3, the 

position part of an Einstein cosmos. In this space, one ur can 

be described as a spinor wave-function with a wavelength equal 

to the diameter of the universe (/i/, chapter 9, section 3b). 

If we assume this diameter to be 1027cm, a particle can be lo- 

calized down to the Compton wavelength of the electron by 

superposing 1037 ur wavefunctions. Thus the ur is essentially 

cosmic. The accuracy of the measurement of a small distance is 
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limited by the available number of urs. 

In this theory, space is not an objective ultimate entity 

like Newton's or Einstein's spaces. Its coordinatisation as S 3 

is done by the group parameters of SU(2) which are no quantum 

observables. As far as its properties can be observed, it is 

rather a "surface" of the high-dimensional quantum state space 

of a large number of urs. Quantum theory is immensely richer 

in information than any classical theory in space-time. 

On the other side, the concept of particle equally loses its 

apparent evidence. If a particle "consists" of 1037 urs, why 

should these stick together? This problem should not surprise 

us. The history of atomism teaches that nearly every particle 

which was considered elementary turned out to be composite 

sooner or later. Ur theory seems to be the most radical pos- 

sible form of atomism; there is no smaller meaningful alterna- 

tive than yes - no. Hence we may expect all objects to be 

divisible into urs in princible. This division is no longer 

spatial, but informationial. The question then is: what is the 

dynamics of the urs; how does it motivate them to keep togeth- 

er? This can be subdivided into two succesive questions: 

i) How to describe the inertial motion of a free particle? 

2) How to describe interaction? 

The present paper is confined to question i). The answer is 

given in principle by Wigner's definition: The state space of 

a free pointlike particle is the representation space of an 

irreducible representation of the Poincar~ group. Thus, if we 

can construct such representations by urs, they will permit an 

interpretation as particles. 

The problem is that ur theory does not yet fully determine 

the relevant relativistic group. In order to understand this 

problem we turn to TC, the conjecture that ur theory is 

trivial (/i/, chapter 9, section 2b). It is indeed trivial as 

far as we leave dynamics aside. It is logically trivial that 

any n-fold alternative can be represented within the Cartesian 

product of k binary alternatives with 2 k~ n . It is mathema- 

tically true that an n-dimensional vector space can be repre- 

sented within the tensor product of k two-dimensional vector 

spaces. If n is countably infinite, so will be k . This decom- 

position is not unique; there are many different possibilities 

of defining the ur. The problem is wether the law of dynamics 

keeps all these differently defined urs or some of them inva- 

riant in time, such that they can be considered as physical 
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objects (or, rather, "subobjects"). 

Certainly the ur hypothesis is not trivial in full abstract 

quantum theory which permits any self-adjoint operator as an 

Hamiltonian. In /i/, ch. 9, sec. 2b, we try to narrow down the 

basic postulates of quantum theory so as to make TC a neces- 

sary concequence. In the present paper we follow a different 

path, by way of a cosmological model. 

We assume S 3, as defined by the symmetry group of the ur, to 

be a parametrisation of the cosmic position space. S 3 is com- 

pact. Hence we seem to have assumed a finite universe. As long 

as we may assume that the information content, hence the num- 

ber of urs, in the universe is finite, a compact position 

space is indeed a natural description. (We should never forget 

that in ur theory space is not a basic entity, but, only a way 

of describing a quantum world, hence perhaps to some extent 

conventional.) If, however, we assume an infinite number of 

urs, we must represent the quantum state of the universe in an 

infinite-dimensional Hilbert space in which noncompact groups 

possess unitary representations. Then we can use unbounded 

world models. 

Yet, in an infinite-dimensional Hilbert space we must 

distinguish between actual and virtual urs, i.e. between 

alternatives that can be decided, given a real situation, and 

alternatives that might only be decided by producing a 

different situation. A free particle in flat position space is 

an example. A discrete basis of its wave functions is given by 

all eigenfunctions of the total angular momentum, j, and of 

one of its components, m. The angular momentum is defined with 

respect to some position in space; let this be the observer's 

position. Then there will be an upper bound Jmax for those wave 

functions which the observer will be able actually to observe; 

for j > Jmax the value of ~ in the volume accessible to the 

observer will, for him, be practically indistinguishable from 

zero. That means that this observer will only make use of a 

finite-dimensional part of the Hilbert space of the particle; 

a part which can be decomposed into the state spaces of a fi- 

nite number of urs. If he wants to know more about the par- 

ticle, he must move to another place, finding an additional 

finite number of decisions; and so on. The full representa- 

tions of non-compact groups like spatial translations or Lo- 

rentz boosts is always done by virtual urs; we cannot actual- 

ly walk indefinitely into space or accelerate a particle 
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indefinitely. 

For a cosmological working model/2/ we choose a cosmological 

(absolute) time coordinate t and a time-dependent total number 

Nu(t) of urs in the universe. N u is supposed to increase 

monotonously with t : the number of possible decisions in the 

world increases steadily with time. N will be a measure of u 

the volume of the cosmic space, as measured by elementary 

particles. Thus our assumption describes the expansion of the 

universe. The semantic consistency of the model will only 

admit a test when we shall have understood how particles can 

be described in such a universe. 

2. Particles 

The concept of a pointlike particle is historicaly an 

abstraction from the concept of a body, or of its center of 

mass, neglecting the body's extension or inner dynamics. In 

the ur theory, this concept must be derived from more basic 

concepts. Wigner derived the free particle from the represen- 

tation theory of the Poincar~ group. The Wigner particles are 

characterised by two numbers: the spin s, and the mass m. In 

the ur theory, particles with arbitrary spin can be represen- 

ted (/i/, ch. 9, sec. 3e). The determination of m remains an 

unresolved problem (/i/, ch. i0, sec. 6d). 

In the ur-theoretical context it is plausible that the rest 

masses of real particles are cosmologically determined. A 

possible consideration might be the following: We measure 

cosmic dimensions bY ponderable matter (and with the help of 

light). The mass of ponderable matter is mainly concentrated 

in nucleons. Let ~ be the Compton wavelength of the nucleon, 

R the radius of the universe. Assume the number N of urs in u u 

the universe to be the volume of the universe, measured in 

nuclear volumes: 
N u ~R~ / A 3 (i) 

In order to localize a nucleon in 3 dimensions we need 

~ 3 RU/A ~ N I/3 (2) 

urs. If we assume this to be the number of urs "contained" in 

the nucleon, there would have to be N 2/3 nucleons in the 
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world. With NI/3~1040 , this gives 1080 nucleons, not too far 

from the estimated empirical number. The real task of the 

theory would be to explain this "condensation" of urs by 

statistical considerations. 

Our present aim is more limited. We search for a precise 

mathematical description of particles in our cosmological 

model. Wigner's construction presupposes a Minkowski space. It 

would seem natural at any space-time point to choose the 

locally tangential Minkowski space. This is what we will 

finally do. But we shall insert a locally approximating de 

Sitter space between the cosmological model and the Minkowski 

space. The reason for this intercalation is that a de Sitter 

space combines two properties, none of which ought to be lost. 

It contains an S 3 as its spatial part; by approximating the 

world model this can be identified with the S 3 prevailing in 

the model at the respective cosmological time t . We need this 

compact spatial volume in order to perform the program of 

determining the rest mass of the particle. And on the other 

hand it possesses a 10-parameter symmetry group which will 

permit us to define particles by the Wigner method which then 

can be translated into the usual Minkowski description by the 

procedure of contraction. 

The free particles thus defined will then be the starting 

material for a theory of interaction (/i/, ch. i0) including 

the transition to the Riemannian space-time of general 

relativity (/I/, ch. i0, sec. 7; /2/). 

3. How to build Particles out of Urs 

The state space of an ur is C 2. The norm is conserved by 

SU(2)× U(1), and by complex conjugation. The latter can, 

according to Castell/3/, be linearly represented by 

introducing anti-urs, represented together with the urs in a 

common C 4. The state space for n urs is then the tensor 

c4n n 
product = ~ C 4 . All states of any number of urs are 

1 ~ c4n 
then contained in the "tensor space" T = ~ . C 1 is the 

n=0 

vacuum. Let r~ (i = 1...4) be a basis in C 4. Then the monomials 
l 
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r .... r. form a basis in C 4n with 
1 1 i n 

~il''-r i I -- r k > = ~nm" ~i ... i k (3) n rkl" m ikl in n 

Now we define "pick-" and "stuff-" operators R r and S r resp. 

(see /i/, ch. i0, sec. 2b) by their action on the basis 

monomials: 

• = + rlr...rn+ ... + rl...rrn + r I. rnr (4) S r r I- .r n rrl...r n .. 

Rr rl.--rn= rl-.-~..-rn+ rl.-.~..-rn+ ... + rl...~...rn(5) 

with rik r and rk% r for all the other indices; means omit 

this vector from the monomial. With respect to the scalar pro- 

duct (3) R r and S r are adjoint operators: R + = S 
r r 

Further on we define "trucking" - operators t by 
rs 

trs rl---Sl---Sk-..rn= rl...r...Sk...rn+...+ rl...Sl...r...rn(6) 

for s ~ s and r % s 
1 1 

The operator trr only multiplies a monom with the number of 

vectors r contained in it. 

The following commutation relations hold 

~i' Sj] = [Ri, Rjl = 0 [Rr, tst] = + Rt~rs 

[R r, S~ = tsr for s ~ r IS r, tst] = - SsO~rt (7') 

~r, S~ = trr + ( n + I) 

denotes the operator multiplying a monom with the number of 

its factors• 

Castell has shown how the conformal group SO(4,2) can be 

represented in the subspace T of T which consists of the 

symmetric tensors only. The operators acting in T which are 

used in these representations are 

+ = S /~-+~ ; a = R r ~-~ (8) ar r r 

with the canonical commutation relations 

r' a = s ; ar, a = r' a = 0 (9) 

They correspond to Bose statistics for the urs. In these 

representations, s = (n I + n 2 - n 3 - n 4 )/2 

with n designing the number of urs in state r, is the Casimir 
r 

operator of SO(4,2) which describes the helicity of the res- 

pective particle; the whole space T contains just one repre- 

sentation for each value of s, describing a massless particle. 

If we want to describe many-particle systems and particles 

with non-zero rest mass we must make use of nonsymmetric 
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tensors. This raises the question wether urs are individually 

distinguishable. In principle one would prefer to assume them 

to be indistinguishable, since their distinction would be an 

additional alternative, not in accord with SC. If TC were 

correct, the version of the ur hypothesis turning out to be 

trivial would decide the question. We have so far considered 

two alternative answers. 

The most general statistics for indistinguishable urs is 

parastatistics, especially para-Bose statistics (/i/, ch. i0, 

sec. 2d). It acts on a larger subspace T of T which contains 

in every C 4n one representative of every irreducible 

representation of the permutation group Sn, i.e. for every 

Young standard scheme. It permits representations of SO(4,2) 

and its subgroups with finite rest mass. 

The present paper presents an other possibility. It works, in 

principle, in the full tensor space T. R r and S r are defined 

everywhere in T. If, following a proposal by DrHhl, we define 

R = - t ; S = t ; (n+l) = - t , (I0) 
r or r ro oo 

then the relations (7') can be summarized into 

Etrs, ttu] = tru ~st - tts O~ru (7) 

Commutation relations for arbitrary powers of these operators 

are given in the appendix. 

As a "ground state" we define a normed vector ~N in T with 

Rr ~N = 0 ; trs ~N = 0 for r % s ; -too ~N = (N+I) ~N (ii) 

~0 is the regular vacuum, a general ground state is given by 

~4n = (4!)_n/2 ~ T l Tnp 
(-i) .Pl(rlr2r3r4)...(-l) n(rlr2r3r4 ) (12) 

P~ 
1 

Pk denotes a permutation of the quadruple of basis vectors and 

T k counts the transpositions in it. The sum goes over all 

possible permutations in all the quadruples. 

Over a ground state the stuff-operators generate a linear 

subspace. Its orthonormal basis vectors are given by 

, 11 12 13 14 (N + n)~ 
= "" S 1 S 2 S 3 S 4 /l N (13) 111121314>N V(N+n+L)~ll!12~13!14~ 

with N = 4n, L = 11+12+13+14 

On I ii121314~ N J I L> N the pick- and stuff-operators act like 

Rj lli,lj,lk,ll> N =~j ~N+n+--------L' lli,lj-l,lk,ll>N 

Sj I li,lj,lk,ll>N = I~N+n+L+I' lli,lj+l,lk, ll>N (14) 
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tjilli lj,lk ll>N : fq I li 1,1j+l,lk ll>  
tjj I L> N = (n+lj) I L> N -too I L> N = (N+L+I) I L> N 

4. De Sitter representation for a given ground state 

Given a ground state ~N' then, by modified pick- and stuff- 

operators, an irreducible unitary representation V 2 of the 
r,N 

de Sitter-group/4/ can be constructed such that for different 

particles the ratio of their numbers of urs in the ground 

state corresponds to their mass ratio. If the spin r of the 

particle is not zero then we have (2r+l) vectors with minimal 

ur number which in this case is N + 2r. 

Let the indicees a, b be equal to 1 or 2 and c, d to 3 or 4. 

Now we define the following operators 

~, (L/2 + 1 - r)(L/2 + 2 + r) 
SaciI ~ = ScaIL ~ = V(II+12+I)(II+12+2)(13+14+I)(13+14~2 ) • 

.~ (L/2 + I)(L/2 + 2) + N 2 I (15) 
(N + n + L + l)(N + n + L + 2) ' Sa'ScIL~ 

~[~ (L/2 - r)(L/2 + 1 + r) 
Rac~L~ =Rcal I~ = V(ii+12)(ii+12+ 1)(13+14)(13+14 ~ i) 

L/2 (L/2 + i) + N 2 I (16) 
• (N + n + L)(N + n + L + i) 'Ra'RclL~ 

~ ((13+14-11-12)/2 +r)((ii+12-13-14)/2 +l+r)' 

Tacl ~ = (13+14)(13+14+i)(ii+12+i)(ii~i2+2) (17) 

i/2~ (13+14-11-12)(2+13+14-11-12) + 4N2;tac~% 

= ][((ii+12-13-14)/2 +r)((13+14-ii-12)/2 +l+r)' 

Teal % ~ (ii+12)(i1+12+i)(13+~4~i)(13+14+2) ........ (18) 

i/2"~ili+12-13-14)(2+ii+12-13-14) + 4N2'tca~ 

The generators of the wanted unitary irreducible representa- 

tion of the SO(4,1) are (19) 

M1 = (t12 + t21 + t34 + t43)/2 Pl = (t12 + t21- t34- t43)/2 

M2 = -i(tl2- t21 + t34- t43 )/2 P2 = -i(tl2- t21- t34 + t43)/2 
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M3 = (tll- t22 + t33- t44 )/2 P3 = (tll- t22- t33 + t44)/2 

These six operators form the S0(4) - subgroup 

and preserve the number of urs and of antiurs. 

P0 = (S14- S32 + RI4- R32 + T31 + TI3+ T42 + T24)/2 (20) 

N 1 = -i(Sl3- S24 + R24- RI3 + T32- T23+ T41- T14)/2 

N 2 = - (S13 + S24+ R24 + RI3 + T32+ T23- T41- T14)/2 

N 3 = i(Sl4 + S23- RI4- R23+ TI3- T31- T24 + T42)/2 

The Casimir-operators for this representation are 

2 2 2 2 2 2 2 2 2 2 
C2= P0 - P1 - P2 - P3 + N1 + N2 + N3 - M1 - M2 - M3 (21) 

C4 = (~.~)2 - (P0 ~ - ~X~)2 - (~.~)2 (22) 

with the eigenvalue equations 

C 2 I 11,12,13,14 >N = (N2 - r (r+l) + 2) I 11,12,13,14 >N (23) 

C 4 I 11,12,13,14 >N = - N2 r (r+l) I ii,12,13,14> N (24) 

written in the pick- and stuff-operators C 2 has the form 

2 C 2 = S14R14 + S13R13 + S24R24 + S23R23 _(tll - t22)2 + (25) 

+ RI4SI4 + R13S13 + R24S24 + R23S23 - (t33- t44)2+ 

+ TI3T31 + TI4T41 + T23T32 + T24T42 - 2(t12t21 + t21t12) 

+ T31TI3 + T41TI4 + T32T23 + T42T24 - 2(t34t43 + t43t34) 

We define (for i, k, i, m mutually different) 

(tii + tkk - tll - tmm)Tik + 2tilTlk + 2tmkTim 

' ~ ^ ^ ^ (26) 
(i I + 12 + 13 + 14 + 2)Tik 

Then C 4 can be written as 

8C4= - (tli+t22+t33+t44) 2 ~13, RI3} + ~S14, RI4} + {$23, R23} +~$24, R24}) 

2 ({T13 +{T14 T41} +{T23 T32 +{ 24  42}) 
+ 4 ~t12,t21} - 4 ~t34,t43 } + 2(tll- t22 ) 2_ 2(t33_ t44)2 

(27) 
In the spin-zero-case there is r = 0 and ii+ 12 = 13+ 14 , 

so all Tac and Tca vanish. For half-integer spin the represen- 

tations are unitary only for N2~I/4 . Representations with 

integer spin are unitary also for N 2 = 0 , but then they de- 

compose into a direct sum of tree irreducible representations 
+ 

of the so-called discrete series ~ : r,q 
+ 

^lim V = T~r, I + ~ + ~r- NZ__~ 0 r,N 2 r,0 r,l (28) 
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Castell's massless particles/3/all belong to the representa- 

tions ~rr and r~, . In the limit (28) only the photon 
,r r 

representations are of this type. 

5. Transition to the Poincar~ Group 

We have introduced de Sitter space as an approximation to 

the cosmological model in order to interpret states from the 

tensor space of urs as states of a particle in de Sitter 

space. The particle was defined by its minimal ur number N. It 

turned out that our operators R and S defined irreducible 

representations of the de Sitter group characterized by the 

number N 2. These representations are localisable on the S 3 as 

considered as the position space in the de Sitter world/5/. To 

the degree to which we can neglegt the curvature of this S 3, 

hence approximate it by a flat space, or the de Sitter world 

by a Minkowski world, such a state can be considered as a 

localized state in a representation of the Poncar~ group P . 

We shall consider the resulting Poincar~ representation as the 

Wigner description of a free particle. 

The transition from the de Sitter representation to the 

Poincar~ representation is achived by a group contraction. It 

is well known that this contraction can be done in different 

ways, so as to give the Poincar~ particle any value m of its 

rest mass. We consider N as the quantity in T which 

corresponds to the rest mass. Hence we shall carry out a con- 

traction such that the ratio N'/N'' of two different particles 

is transformed into the ratio m'/m'' of their masses. 

In the process of contraction a parameter A which 

corresponds to the curvature scalar of the de Sitter space 

goes towards zero. Simultaneously the parameter N 2 which 

characterises the representation moves towards infinity. The 

rest mass m in the resulting Poincar~ representation is given 

by 

2 m = 1 i m ( A 2 N 2) (29) 

k2 _~ 0 ; N2--~ 

We need a relation between A and N in order to fix m. It is 

sufficient to postulate that this relation should be such that 
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for two different particles the ratio N'/ N'' is kept 

constant throughout the process of going to the limit; then we 

will achieve 

m' / m'' = N' / N'' (30) 

We can e.g. abitrarily choose that the Planck-Wheeler mass 

should be mp = 1 for all time. The number of urs in the 

Planck-Wheeler particle is N I/2 . If, as our cosmological model u 

assumes, N depends on the cosmological time t , the number N of u 
urs in the ground state of a particle whose mass is assumed to 

have at a given time a fixed value in units of the Planck mass 

will depend on cosmological time: 

N / N I/2 = f(t) (31) 
u 

It will, however, depend on the intended theory of rest masses 

in which way this condition will be specified. 

B6hm and Moylan/6/- have shown that the representation space 

of an irreducible representation of SO(4,1) is the direct sum 

of the representation spaces of two irreducible representa- 

tions of the Poincar6 group, both with positive energy and 

equal mass m, but different by a charge-like quantum number. 

So, coming from the de Sitter group, the particle - antipar- 

ticle dualism is very natural. In their theory m is not fixed, 

this is done by our presciption. 

We recapitulate our answer to the question i., how to 

describe the inertial motion. Locally we have justified the 

Wigner description in Minkowski space; its empirical success 

justifies our calling the Minkowski coordinate x 0 the time. 

Through the local de Sitter space this identification leads 

back to the local time in the cosmological model. However, 

with increasing cosmological time t the local Minkowski space 

is replaced by another one; it is to be assumed that N and m 

will thus depend on t . This dependence will be determined by 

the assumed dependence of N on t in the cosmological model. u 

Since the actual measurement of time will depend on the 

functions N(t) and m(t) , t being the assumed cosmological 

time, it seems possible that the model contains no arbitrary 

function Nu(tm) , if t m means the time as locally measured. 

But this question is further to be studied. 
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A p p e n d i x  

Some commutation relations for powers of pick- and stuff- 

operators 

let be r ~ s 

min(n,k) n! k! 
Rk tn = ~ ' (n-j)' j' (k-j)' 
r rs j = 0 " " " 

t n sk m~_~) n! k! 
sr r = ~ , (n-j)' j' (k-j) i 

j ~ O " " " 

t n-j R j R k-j (AI 
rs s r 

S k-j S j t n-j (A2) 
r s sr 

min(n,k) 
R k S n = > 
r s j = o 

n! k! s~-j t j R~-j 
(n-j)i j! (k-j)! sr 

(A3) 

i l j = o (n-ji!j!(k-j)! (tii-too J i(A4) 
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Universit~t Hamburg, D-2000 Hamburg 50 

It is the purpose of these notes to give an account of some recent work on the 

structure of local algebras appearing in the algebraic formulation of relati- 

vistic quantum physics. (For a review of this subject up to 1980 cf. [I~ .) 

There has been considerable progress on this problem in the last few years, 

both from the mathematical and the physical side, and one may say that we have 

reached now a satisfactory understanding of the properties of these algebras in 

generic cases. 

Let me begin by recalling the general postulates of algebraic quantum field theory. 

The basic input in this setting is the assumption that one is given a mapping (a 

"net") 

assigning to each open, bounded region 

algebra 

(i) 

of Minkowski space some von Neumann 

1) ~(~) on a separable Hilbert space ~ . Each ~ )  is interpreted 

i) 
A yon Neumann algebra is a weakly closed *-algebra of bounded operators. 
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as the algebra generated by all observables which can be measured within 0 , and 

is the space of physical states. In view of this interpretation one is led to 

assume that 

and that locality holds, i.e. 

if @~ c @~. (3) 

Here ~' denotes the spacelike complement of ~ and 0/-(~)" the algebra of all 

bounded operators commuting with the elements of ~6~ ). The space-time symmetry 

group ~ (i.e. the Poincar@ group, possibly extended by conformal transformations) 

is assumed to act on ~ by a continuous, unitary representation J(L) , L_6 ~, 

and the unitaries U~L~ generate automorphisms inducing the symmetry transformations 

L on the local algebras, 

U(L) C~_(_(9) U(L) -~ = O[(L@). (4) 

It is furthermore assumed that the generators of the space-time translations 

U C~) ~ ~ & ~ satisfy the relativistic spectrum condition (positivity of 

energy), and that there is an (up to a phase unique) vector ~ 6 ~ , represen- 

ting the vacuum, for which 

U(L)~-- S%, L~2~. (5) 

In the following we also assume that ~ is cyclic for the local algebras, i.e. 

uJ C<C@)~ = ~6. (6) 
(9 
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Since observables do not change the charge quantum numbers of a state this means 

that we restrict our attention to staZ~lying in the same superselection sector as 

the vacuum. But this is no restriction of generality, since the structure of the 

local algebras ~C~) we are interested in, is the same in each superselection 

sector of the Hilbert space of all physical states. 

In contrast to the more conventional formulations of the general postulates of 

quantum field theory, such as the Wightman axioms [ 2], one deals in the algebraic 

setting with algebras of bounded operators. This assumption is mathematically con- 

venient, because there do not appear subtle "domain problems" in this setting. But 

it is also physically reasonable: since observables are to be represented by self- 

adjoint operators, one can proceed to the corresponding spectral resolutions, 

giving a family of orthogonal projections which contains the same information as 

the original operators. With reference to the Wightman framework one may thus think 

of ~ )  as the algebra generated by all bounded functions of some basic field(s) 

.... smeared with real testfunctions ~ having support in ~ 2). So from the 

algebraic point of view the fields are regarded as a collection of generators of the 

local algebras. 

It has been emphasized by Haag [4], that for the physical interpretation of a model 

it is not necessary to know the physical meaning of each individual observable . All 

what is needed in order to determine e.g. the superselection structure, or the 

particle spectrum, or collision cross sections etc., is the correspondence (I) be- 

tween space-time regions and local algebras. 

In view of this fact it is natural to ask, which types of algebras ~ )  are suitable 

as carriers of this information. There exists an abundance of different (non-iso- 

morphic) yon Neumann algebras, and it is known that not all of them can appear as 

2) 
For sufficient conditions on the unbounded field operators allowing a rigorous 

construction of the local algebras cf. for example [3]. 
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elements of the net (I) due to the restrictions imposed by the general principles 

of relativistic quantum physics. What we want to outline here is the relatively 

new insight that for a large class of physically relevant models, which are 

distinguished by a "tame" high-energy behaviour, the structure of the local algebras 

is in fact unique (i.e. model-independent). Phrased differently: the internal structure 

of the local algebras is the same in interacting and free field theories, so these 

algebras are explicitly known. This result shows that the dynamics of a particular 

model enters only in the specific properties of the mapping ~ ---* O ~ .  

In order to substantiate this result we need various concepts from the theory of 

yon Neumann algebras, which will be explained in the following. 

I. Let ~ C ~ )  be any yon Neumann algebra . The commutative algebra ~ ~ is 

called the center of ~ . A yon Neumann algebra ~ with trivial center, i.e. 

A£ I f~ = ~ ~ , is called a factor. So our first question is: do the local 

algebras have a center? 

A general answer to this question is not known. But it has been shown by explicit 

calculations that the local algebras are factors in many field theoretic models [5]. 

On the other hand there exist certain artificial models, where the local algebras asso- 

ciated with some given space-time region ~ do have a non-trivial center. It is note- 

worthy that these counterexamples violate the so-called time slice axiom, where one 

assumes that the inclusion (2) still holds if the region ~ is contained in the 
II 

causal shadow ~ of ~ . This condition should be satisfied whenever there is a 

dynamical law withhyperbolic propagation in the model. So it seems that the local 

algebras are factors in these generic cases, and, to simplify the subsequent dis- 

cUSSiOn, we will restrict our attention to such models. 

2. According to Murray and yon Neumann the factors ~ can be subdivided into 

various types by looking at the relative dimensions of the orthogonal projections 
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in ~ [6]. Based on the Tomlta-Takesaki theory, a more refined classification 

of factors has been given by Connes [7]; in fact, this classification seems to 

be exhaustive as far as the yon Neumann algebras appearing in physics are concerned. 

Following Connes one proceeds as follows: let ~t C ~(~S) and let ~ ~ 

be any vector which is cyclic and separating for~ , i.e. 

i~{& : ~ ~n~ M@÷ 0 f o r  Medg,M¢O. (7) 

(We assume that such vectors exist. Note that the vacuum ~ is cyclic and separating 

for the local algebras, according to the Reeh-Schlieder theorem.) One then defines 

an anti-linear involution 5~ , setting 

It is easy to see that ~_~ is a closable operator, so the operator S¢ = 

is a densely defined, positive invertible operator, called the modular operator 

associated with the pair (~)¢) . Amongst the remarkable properties of these 

modular operators following from the Tomita-Takesaki theory E8~, we only mention 
Lb 

that the unitaries A¢ ) ~ E ~ induce automorphisms of ~ , i.e. 

A~. ~ A .  = ~ for ~ (9) ~g 

Looking at the spectrum ~p k@ of k~ , Connes [7] invented an algebraic in- 

variant of J~, 

where the intersection is to be taken with respect to all states ¢ 

(io) 

satisfying the 
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condition (7). Connes was able to show that S(J~ has to be one of the following 

sets if J~is a factor: 

The factors JVt for which S(J~) has the form given in the first line can still be 

subdivided into various types, but we do not need to discuss this here. In the 

latter two cases ~ is called a factor of type ~% and T~ d , respectively. 

Hence our second question: what is the type of the local algebras? 

At first sight it might seem hopeless to answer this question since One must calculate 

the spectrum of an abundance of operators. But there is a useful result due to 

IT], saying that if there is some ~6 ~ such that the corresponding modular Connes 

automorphisms (9) do not have any fixed point (apart from multiples of the identity), 

then 6C~) = sp A~ • SO in many cases it suffices to calculate the modular 

operator associated with a single vector. 

Let us now turn back to quantum field theory. Assuming that the local algebras are 

generated by Wightman fields, Bisognano and Wichmann [9] have calculated the modular 

operators associated with (~(W) > ~ , where W is a wedge-shaped region such 

as 

~/' = ~OC e ~ ~ . 0C4 ..~ I,.T.ol } " (12)  

They showed that the modular group A [~ W associated with (O[(W)) ~ coincides 

with the unitary representation U(A(~]) of the Lorentz-transformations 
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A(~) -~ II S.~t ,~,v, Jc c~ O~TE~ 04 O0 I (13) 

o o ,'1 . 

8o, irrespective of the dynamics, one has 

A = U(Ace} , t E l l ,  (14) 

which in view the completely different origin of these groups is a quite remarkable 

relation. From this relation it is now easy to deduce the type of the algebras ~(W): 

since apart from multiples of the identity there does not exist any operator in ~(W) 

which is invariant under the Lorentz-transformations U~)) , it follows from (14) 

that S(0~(W~) = SPew = ~+ ' so O[(~A/) is a factor of type ~ according 

to the classification of Connes. (That 0~(W) is a factor follows also from general 

arguments [I].) 

The modular operator corresponding to the algebras of other space-time regions 

could explicitly be calculated only in special models, however. For models of free, 

massless particles it was shown by Buchholz [10], that the modular group £t~ 
V 

associated with (~(V)~ £~ where V is the light cone, is a representation of 

the dilations. Since there are no non-trivial fixed points in 0~(V) under dilations 

it follows that ~(V) is also a factor of type ~4 " For the same restricted class 

of models ~islop and ~ongo 01] have been able to calc~ate the modular group A~ 

associated with (~(~)~ ~) , where ~ is a double cone. They could show that 

in this case the modular group is a representation of a l-parameter subgroup ~--~) 

of the conformal group whichhas a timelike generator and leaves ~ invariant. 

Again it follows that ~(~) is a factor of type ~4. 
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In all these cases the calculation of the modular group was possible because of 

its purely geometrical action on the local algebras. It was pointed out by Haag 

that under these circumstances the appearance of conformal transformations is no 

coincidence: since the causal structure of Minkowski space manifests itself in the 

spacelike commutation relations of the local algebras, any automorphism of these 

algebras having a purely geometrical meaning must respect this causal structure, 

and therefore correspond to a conformal transformation. This remark reveals the 

limitations of the above direct method for the calculation of the type of the local 

algebras: since in general only the Poincar$ transformations are a symmetry of 

field-theoretic models, the modular antomorphisms associated with bounded regions 

will in general not have a geometric interpretation, and it is therefore difficult 

to determine their action explicitly. 

At this point the subject got stuck for some time. But it was recently realized by 

Fredenhagen [12] that one can determine the spectrum of the modular operators 

associated with bounded space-time regions by going to the scaling limit of the 

underlying model. Fredenhagen started from the simple geometric observation that 

if ~C W (cf. equation (12)) is a double cone containing the origin in its closure, 

and if A(~] are the Lorentz transformations introduced in relation (13), then 

one has for any ~ with 0 < ~[ C 

A ( t l .  A6  c @ i f  £~ l t l  ~ I ~ k / ,  (~Sa) 

and consequently (of. equation (2)) 

(15b) 

Now from the work of Bisognano and Wiehmann it is known that U(A(~]) coincides with 

the mod~n~ group A~ associated with (0~(W),~). Moreover, since 
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G ~  C ~(V~) it follows from the very definitions of the modular operator A(0 

associated with (~6~)~)and AW that for any A)~ E G(~) 

(~w A~,&w B~)= tAe AFA,A(o BG) , (16) 

so AW is an extension (in the sense of bilinear forms) of A~ . Using this fact 

and equation (15) Fredenhagen could show that the unitaries AI~ ~ and U(A~t)) 

act on the vectors A ~ A ~ ~ in "almost the same manner", provided 

is sufficiently small. Namely, given any testfunction ~ and any 6>0 there exists 

a ~L , O< ~<  Jl , such that for all A 6 ~X~) 

II IaL fc _5 { &e- 

Hence if one chooses in this relation a function ~o 

support in the complement of the spectrum of the generator - ~  of ~ 

one obtains 

whose Fourier transform has 

(18) 

Note that this relation is a statement on the spectral properties of the Lorentz- 

transformations. 

Now in theories where dilations are a symmetry it immediately follows from (18) that 

this relation does not only hold for hE ~(~ , but for all A E ~(~) , since 

the dilations commute with the Lorentz - transformations. So in this case one can put 

= 0 in (18). But since the spectrum of the generators of the Lorentz-transforma- 

tions is ~ , this implies that ~o must be 0 , which means that spA~ = ~.. 

The same conclusion can also be drawn if the underlying theory is not dilation in- 

variant, but has some non-trivial scaling limit. The technical input needed is that 

there exists some Wightman field @ affiliated with the local algebras (cf. 



footnote 2), for which the scaled Wightman distributions 

N(~1 ~' ( ~ ,  ~(~%) ... ~ { ~  ~ )  

have a non-trivial limit as ~ tends to O, if the scaling factor N(1) is suitably 

chosen. It is expected that such fields exist in all renormalizable field theories 

having an ultraviolet fixed point. With this input Fredenhagen could calculate the 

Connes invariant of the local algebras ~<~) and show that they are factors of 

type ~ 4 (or, if the local algebras have a center, that only such factors appear 

in the central decomposition of these algebras). So we have learned from this argu- 

ment that this specific structure of the local algebras is intimately connected 

with the conformal invariance of field theoretic models in the short distance limit. 

3. The last concept which is needed for a complete characterization of the local 

algebras is the notion of hyperfiniteness. Avon Neumann algebra 3~ is said to be 

hyperfinite if there exists an increasing family of finite dimensional subalgebras 

~¢ c ~ ~ "" c ~ ~ .-. of ~ which generates ~ . These hyper- 

finite yon Neumann algebras are well studied. 

For the problem at hand s recent result due to Haagerup ~31 is of great 

interest: this result says that all hyperfinite factors of type ~4 are isomorphic. 

In view of this fact and the preceding results it is therefore natural to ask under 

which circumstances the local algebras in field-theoretic models are hyperfinite. 

From the point of view of physics one would expect that such models should describe 

systems with a "reasonable" (i.e. not too large) number of degrees of freedom. But 

there is the problem of an appropriate characterization of this class of models. It 

has been proposed by Buchholz and Wichmann to distinguish these models by a 

nuclearity criterion C14]. According to this criterion the sets of vectors 
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(20) 

where H is the Hamiltonian and L[(~) the group of unitaries in ~(~) , ought 

to be nuclear, i.e. any such set should be contained in the image of the unit ball 

in ~ under the action of some trace class operator. It was argued in [14] that 

this condition is satisfied whenever a model admits thermodynamical equilibrium 

states for all temperatures ~ > O . This in turn is only possible if the particle 

spectrum of a model is such that the sum ~ ~--~I[ where the I~ are the 

particle masses counted according to their multiplicity, is finite for any ~> O. 

So, roughly speaking, the nuclearity criterion characterizes models with a particle 

spectrum which does not grow too rapidly at high energies. 

It has recently been shown by Buchholz~ D'Antoni and Fredenhagen E15~ that the local 

algebras are indeed hyperfinite in all models satisfying a (slightly strengthened) 

version of this nuclearity criterion. So summing up, we see that in all models 

exhibiting conformal .invariance in the short distance limit and a reasonable particle 

spectrum at high energies, the local algebras 0[~) are hyperflnite factors of 

type~l~ , (respectively direct integrals of such factors if the local algebras 

have a center). Disregarding the latter cases and making use of the result of 

Haagerup quoted before, this implies that for this physically relevant class of 

models the local algebras are all isomorphic, and thus model-independent. Hence, as 

far as the internal algebraic structure is concerned, one may think of any local 

algebra G(~) corresponding to some double cone ~ as a fixed, concrete object: 

the Araki-Woods factor ~o [16~. 

One may expect that this very explicit information on the local algebras will be the 

key to further progress in the structural analysis of the local nets ~--* G(~) 

appearing in quantum field theory. 
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DOES SUPERGRAVITY ALLOW A POSITIVE COSMOLOGICAL CONSTANT? 

M. F. Sohnius 

The Blackett Laboratory 

Imperial College of Science and Technology 

London SW7 2BZ, England 

In this talk, I shall report on work done in collaboration with 

P. van Nieuwenhuizen and K. Pilch [i] on the sign of the cosmological 

constant in supergravity models with unbroken supersymmetry. It has 

long been believed that supersymmetry rules out a positive cosmologi- 

cal constant, i.e. that a de Sitter background with O(1,4) symmetry 

cannot sustain a supersymmetric theory. This is in stark contrast to 

the relative ease with which it is possible to incorporate a negative 

cosmological constant and its supersymmetric counterparts into super- 

gravity [2], giving a theory with an anti-de Sitter background and 

0(2,3) symmetry. Not too long ago, J. Lukierski and A. Nowicki [3] 

suggested that it should be possible to construct a field theory 

around the guaternionic superalgebra UU~(I,I;I,~). The Lie subalgebra 

of this is locally isomorphic ~) to O(i,4)xO(2) and we therefore have an 

obvious starting point for the construction of a supersymmetric theory 

with de Si£ter background. 

The non-supersymmetric (Einstein) theory of gravity allows the 

addition of a "cosmological term", -¼ k VCg, to the action with either 

sign for k, and there is no natural theoretical reason for k to be 

positive, negative or indeed k =0 as observation tells us it is to 

within very stringent limits (with G = Newton' s constant we have a 

bound for G 2 k~<lO'120). From the theorist's point of view, any restric- 

tions are of great interest which are placed on k in models with even 

the slightest chances of being related to the actual laws of nature, 

and the question must therefore be answered conclusively whether super- 

gravity is as "one-sided" as believed in its preference of anti- 

de Sitter or Minkowski backgrounds over de Sitter ones. We think we 

provided this answer in our paper [i], and the answer is a cautious 

"yes, de Sitter supergravity does not work". 

• ) in this talk, I ignore distinctions between groups and their algebras and between 
different but locally isomorphic groups 



92 

We started with a classification of all superalgebras whose 

bosonic Lie subalgebras are of the form 

0(2,3) x something (anti-de Sitter case) 

O(1,4) x something (de Sitter case) 

and found that only in the "normal case" of O(2,3)x compact group the 

algebraic structure is such that always {O, Or} >0. These "good cases" 

are the well known (extended) supergravity theories with negative 

cosmological constant and a compact internal symmetry group. Since in 

a Hilbert space with positive definite metric an operator {O, Or} is 

hermitian and positive definite, all other cases will necessarily lead 

to problems somewhere. We did not therefore find it surprising that 

in the simplest of the "bad cases" (N =2 de Sitter supergravity) the 

relative sign of the Einstein term and of the Maxwell term in the 

action 

o~deSitter = v/~ ( ½ R - ¼ k + ... + ½ Y~ %v + "'" ) 

came out wrong and predicts that either the graviton or the gravi- 

photon must be a ghost (the unconventional normalization of the 

Maxwell field with a factor of ½ instead of ¼ avoids an abundance of 

vq later). 

I begin the main body of the talk with short outlines of the gen- 

eral structure of Poincar4 supergravity on the one hand and gravity 

with a cosmological constant on the other. I then proceed to describe 

the relatively easy way in which one can construct anti-de Sitter N =i 

supergravity using tensor calculus techniques. After this, I present 

our result of the classification of de Sitter superalgebras, and 

finally I present the field theory constructed out of the simplest of 

those superalgebras which have an O(1,4) space-time group. The result 

will be the lagrangian outlined above with its problem of giving rise 

to unitarity ghosts. 

Poincar4 supergravity is based on the algebra 

a 
{ o , ~ }  = 2 ~  % , [0, %1: [%, %3:o , 

which describes the relationship of supersymmetry 

transformations and translations of space and time. 

(i) 

(fermion-boson) 

This algebra has 

the Lorentz group O(1,3) as outer automorphism group, with 

t0, %61 =½%b~ , E%, %c~ =i~ab%-i~ac% (2) 

In the case of supergravity, the parameters of all transformations are 

functions of space and time, according to the following table: 
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Generator: Type o_ff transformation: Parameters: 

P general coordinate ~a(x) 
a transformations 

O~ local supersymmetry ~(x ) 
trans formations 

A4ab local Lorentz frame kab(x) 
rotations 

As in all gauge 'theories, there is a gauge connection associated 

with each local transformation. The field quant a of these are the 

"particles" predicted by the model: 

Generator: Connection: Particle: 

a 
P vierbein e graviton a 

O~ Rarita-Schwinger field ~; gravitino 

ab 
A4ab Lorentz connection ~]z --- 

No particle is associated with the Lorentz connection, since its own 

(algebraic) equations of motion express ~ ab in terms of e# a and ~#e. 

The relationship between metric and vierbein is the usual g#v = 

Wabe~aev b so that 

The lagrangian of N=I Supergravity, 

= ½eB + 2ie~vP° ~#ea~a~5%~ov ' (4) 

is a density under the supersymmetry transformations 

a -2i [ a 

where v# i s a derivative which is covariantized with respect to local 

Lorentz transformations only (using ~ ab). At the linearized level, 

the algebra of the transformations (5) is just (i), provided that the 

equations of motion are employed: 

a _ ½eaB (Einstein equation) 

(6) 
0 = ~ m e ~vpO 7SYvVpVo (Rarita-Schwinger equation) . 

Note that these are coupled equations since ~ ab and hence R#v ab are 

functions of both e# a and ~#e. 

In flat Minkowski space, two translations commute: [a~,av] =0. In 

a curved space-time situation, however, the commutator of two 

(covariant) translations is in general not zero but rather a combi- 
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nation of a further translation and a rotation. Somewhat loosely, I 

write this structure as 

t % ,  %1 : i~va% + { ~v~b%b (7) 

The equations of motion (6) allow the special solution e# a= 6# a and 

~#=0 in which case the right-hand side of (7) is zero and the commuta- 

tor collapses to that of flat Minkowski space: a Minkowskian back- 

ground is a solution of N=I Poincar4 supergravity. If, however, the 

equations of motion force R~O, as e.g. in the presence of a cosmologi- 

cal term, then a flat metric is not a solution. Thus 

~ <½R - {~)  (s) 

gives R = k because the Einstein equation is now 

0 = &a _ {eaR~ + { e  ax~ (9) 

A solution is now given by the metric of a de Sitter (or anti- 

de Sitter) space with 

ab =~2 ( - I  ~ a ~ _  8 b ~ ) R  = 1 i (  ~ ~a b _  8b~)  x (lO) R. 

The algebraic relationship associated with eq.(7) is now 

E%, PbJ = ~ %b ( l l )  

and the group generated by ~ and Mab is 

O(1,4) (de Sitter group) for k > O 

0(2,3) (anti-de Sitter group) for k < 0 

The question arises whether in the presence of supersymmetry the 

action can also be augmented by a further invariant to include a cosmo- 

logical term: 

2., = ZJSG- ¼eX + . . . .  (i2) 

The easiest way to answer this question is to extend both the 

lagrangian and the transformation laws to include auxiliary fields S, P 

and Aa: 

. . .  _ ; e ( s  2 + P 2 + ~ A  a) 

i . a A 

~ ( s + i P )  = ¼ T(1+i%)~,a~a 

(13) 

(14) 



95 

Now, in the presence of "off-shell supers3~metry", equations of motion 

come as whole supermultiplets. One of these is 

i a i p2 _ iAaAa), VaAa ) , (15) 

a supermultiplet which vanishes on-shell: $=0. This, together with 

other equations of motion which ensure that A a=O on-shell, implies 

R=O and hence a Minkowskian background. It is now, however, rela" 

tively easy to add another invariant to the lagrangian (13), namely 

= 2 e g S -  i ~ g ~  o ~ V ~  (16) /'~o~ 
(here g is an arbitrary real coupling constant and not detg~v). The 

relevant equation of motion is now not $=0 but 

3 
$ = (~ g, o; 0;0, o) (17) 

3 
which implies S = ~g and 

R = - - ~  S 2 = - 3 g  2 , ( 1 8 )  

i.e., we have an anti-de Sitter background. Note how the sign of R 

comes out negative, irrespective of the sign of g. This is ultimately 

due to the sign of the S2-term in the lagrangian which is fixed by the 

requirement of supersymmetry. 

If we wish, we can eliminate the auxiliary fields, using their own 

equations of motion, and get 

- ieg.#o#V.v (19) 

a = _2i~ a 

(20) 

To get the other sign for the cosmological constant, one would need 

terms of the type ...+eX 2 +2egX+o.. in the lagrangian. Such terms are 

present in the coupling of matter to supergravity, but in those cases 

<X> #0 implies spontaneous breaking of supersymmetry. These difficul- 

ties have given rise to the suspicion that there is no de Sitter super- 

gravity. 

For a more systematic study of this problem, we backtrack and 

explore possible superalgebras which contain the group algebras of 

O(1,4) or 0(2,3) as factors. We write these algebras in a 5-dimensional 

notation (a,b = 0,i,2,3,5): 
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= - - + (21) 

Before enlarging this to a superalgebra, we must look at the proper- 

ties of spinors in five dimensions: 

[Qa' Mab] = ½(%b)~QB with aab -= ½["/a,~b] • (22) 

The h e r m i t i a n  a d j o i n t  s p i n o r  Qf w i l l  t r a n s f o r m  under t he  r e p r e s e n t a -  

t i o n  wh ich  i s  g e n e r a t e d  by -½(Oab)  ~. These r e p r e s e n t a t i o n s  a re  e q u i -  

v a l e n t ,  i.e., a matrix O exists with 

- (Oab ) ~ = D- lOab  D (23) 

This O has certain properties (for more details see the Appendix of 

ref. [4]); the most important here is 

+i for 0(2,3) (anti'de Sitter) 
DD ~ 

= ~ -1 for O(1,4) (de Sitter). (24) 

This means that only in the anti-de Sitter case Majorana spinors with 

can be present: eq. (27) is only consistent for DD ~=+l. In the 

de Sitter case, the components of O are linearly independent of those 

of Q % . This absence of Majorana spinors means that for each Q there 

is an independent Oe or, in the usual way of counting, that N is even. 

Introducing a base Qai which contains all Q's and all Qc 's, we then 

necessarily have a condition 

This is consistent only if r E ' D O  ~ =+i, so that for the de Sitter case 

we get EE~---I. Indeed, we can always number the Q's in such a way 

that 

The most general solution of the Jacobi identities for the exten- 

sion of the algebra (21-22) into a full superalgebra is 

ab 

[ Mab , Tij] = 0 (28) 

[Qai '  5k ] = i°~iiQek - i(~ikQe/ 

with C the (antisymmetric) charge conjugation matrix for five space- 
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time dimensions. The symmetry properties of the structure constants 

wij and of the internal symmetry generators ~j are 

%1 = ~ii ~ ~ i  = - 5i ( 2 9 )  

The (symplectic) Majorana condition, eq.(26), implies reality condi- 

tions for the matrices w and T, 

~% = E ~ E  -I and T f = -ETE -I , (30) 

which are defined by 

( ~ ) i j  = ~ i j  ; ( -I-)i j = ( ~ i ) ~  

( T ) i /  = Tij ; ( T t ) i j  = ( S i ) t  
(3 l )  

In the an t i - de  Si t ter  case where E = i, this implies that ~ is hermitian 

and its symmetry means that it is real. If it is non-singular, it can 

be brought into the form 

= diag (i ..... I,-I ..... -i) (32) 

and the internal symmetry group, whose structure is the only open ques- 

tion at this point, is O(p,q) with P+q=N. If ~ has any zero eigen- 

values, we have a group contraction of O(p,q) and I must refer to the 

paper [i] for details. 

In the de Si t ter  case ,  the ~ j  will also generate some (complex) ver- 

sion of O(N). Eq. (30) implies the following most general form for T: 

T = _ i h T  aT w h e r e  a = - a  T ; h = h "t" ( 3 3 )  

analysis will show that the (N)2 matrices and closer 

[o 
reom~ ~ =. _ih T (34)  

N 
generate U(~), while the iN(IN-l) matrices 

Tn°n-c°mpact = a% ( 35 ) 

are all generators of non-compact transformations. That complex vet- 

of O(N) which has U(2) as its maximal compact subgroup is called sion 

O~(N) and we conclude that the internal symmetry group of de Sitter 

superalgebras is O~(N) or some contraction thereof. The following 

table expresses the first few star-groups in terms of more familiar 

classical groups: 
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ot (2 )  = 0(2)  
0t1(4) SU(2)xSU(1,1) 
0 t ( 6 )  = SU(3 , I )  (36)  

O~(8) = 0(6,2) . 

We find that for de Sitter superalgebras, the internal symmetry group 

is always non-compact. Such internal symmetries were ruled out by 

Coleman and Mandula [5] and hence in [6]. Tracking back, one finds 

that it was the requirement of a positive energy spectrum and the posi- 

tivity of the metric in Hilbert space that lead to the conclusion that 

internal symmetry groups must be compact. Usually, these are ful- 

filled in supersymmetric theories where the relationship 

4 
E {Oa '  (O(z) t }  =: H (37)  

e= l  

ensures positivity of the energy because the left-hand side is a posi- 

tive definite operator if the Hilbert space is positive definite: 

{Q, o*] = I o *  , ,12 + I o Ix>l= o (38) 

(=0 only if O =0). 

Let us therefore examine how eq.(37) comes out in our case. We 

choose a set of four ~-matrices which are purely imaginary (Ma3orana 

representation), and a fifth one 

~ 70 71~2 ~3 for O(1,4) 

~5 = Li ~0 ~l ~2 ~3 for 0(2,3) m 

which is real for O(1,4) and imaginary for 0(2,3). We then have 

~0~5 {~5 for O(1,4) 
C = -i~0~5 and D = 1 for 0(2,3) . 

This means that { Q, 0 f } = - ~ ( oabcD -1T) Mab + 2i CD -IT T and 

4 ~ = I 0 for 0(1,4) 

(~uJ)#} t 8(~i1 M05 for 0(2,3) . 
g {Oai, (39) 
~=i 

We find what we suspected: the energy M05 is positive definite for 

the anti-de Sitter case and internal symmetry O(N), indefinite for the 

anti-de Sitter case and O(p,q), and something is wrong with the Hilbert 

space for the de Sitter case as well as for degenerate ~'s in the 

anti-de Sitter case. 

Let us find out what exactly goes wrong for N=2 de Sitter super- 

gravity. There the algebra can always be brought into the following 

form ( in four-dimensional notation, a,b = 0,1,2,3) : 
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' [%' , 

{ O i '  O/} = 2 i 5 i / ~ a o P a  + 0 i j °ab 'y5 C M a b  - 2i'),5 C e i jT  - 

The Majorana condition is now 

Oai = i eij ('YsC)m8 Q%B 

The following set of transformation laws on vierbein, 

and Rar ita-Schwinger field, 

- a 

a = 2i ~i ~/ 9'5~t/Lj o% Ejj 

O A  = - 2 i  ~i!b'.i 
i ab 

with 

Maxwell 

(40) 

(41) 

field 

(42) 

ab KCab KbCa KabC ) ,m = e ( + - IJ, ,u.c 

1 c ar C i~.i c Kab e e " eb v (- ] a e v +½ + = ,y "y5 1~'vi el i )  • 

close on "local translations", Maxwell transformations and Lorentz 

frame rotations: 

[0 I, 62] = 6p(~ a) + 0M(~) + OL(kab) (43) 

with (partly field-dependent) parameters 

-i 2 
~a = _ 2 i  [ f  a 5 ~j2 Eij ; e~ = 2 i ~ i  ~i 

E.. 0 ab F ab " F a b ) ]  ~i 2 

The P-transformation is itself a general coordinate transformation fol- 

lowed by field dependent gauge transformations. The Maxwell transfor- 

mations are 

a 

oM% =o , oM%=a= , (44) 

The algebra closes only modulo equatfons of motion. Working out all 

commutation relations, one finds that at the linearized level every- 

thing indeed reduces to the UUa(I,I,;I,H ) algebra (40). 

We now construct a lagrangian which is a density under the trans- 

formations (42). The result is 

~= ~R + 2i~"vP°~.i.vei]%~fa] + 2~v%v + Zie~.i(F~V-i~5'F/ZU)1~v, 

- 3e - 2e~/Li a/Lv ~ljVV / + ~t4-term (45) 
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which gives rise to just the eq%letions of motion necessary to close 

the algebra. 

Two points must be noted about this lagrangian: 

(i) there is a positive cosmological constant k =12, in agreement With 

eqs.(ll) and (40), 

(2) the Maxwell part of .the action has the wrong sign. 

Before we can say that F;ZVP;Lt, has the wrong sign, we must be sure that 

the lagrangian as a whole has the correct one. It is quite intricate 

to establish the correct sign for the Hilbert action since it defies 

straightforward canonical formalism. There is, however, a short-cut: 

it is solidly established that independent of any conventions, the 

Weyl field which appears in a conformal transformation g lz t , "  e2Og/j.v 
will always appear as a unitarity ghost in the action. In my conven- 

tions, the transformation law for the Hilbert action under conformal 

transformations is 

f d4x v/L'g g -' f d4x v / ~  ( R - 6 ~/LC ~IZc - 6 eat' 81zeta alZc ) e 20 (46) 

SO that a positive factor for /L~R is the correct one, since then the 

"kinetic term for C" is that of a ghost. Hence we conclude that the 

sign for eR in (45) is correct, and that of F;~vP;~ v is wrong. 

In conclusion, I may summarize our results as follows: 

(i) de Sitter superalgebras exist. N is always even and the bosonic 

symmetry group is 0(1,4)xO~(N). 

(2) Representations of these algebras on gauge fields have been con- 

structed for N =2 and probably exist for N < 8. 

(3) An invariant density has been constructed for N=2 and probably 

exists for N< 8. 

(4) This density cannot be interpreted as a lagrangian, since it leads 

to unitarity ghosts (fields with the wrong sign for the kinetic 

part of the lagrangian). This is in agreeement with expectations 

raised by the structure of the algebra which cannot be realized on 

a positive definite Hilbert space. 
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PHOTONS AND GRAVITONS IN CONFO~L FIELD THEORY 

W.F. HEIDENREICH 
INSTITUT FUR THEORETISCHE PHYSIK 

TU CLAUSTHAL 
W.GERMANY 

I. INTRODUCTION 

What is the spacetime symmetry group of the fundamental equations 

of physics? Several answers are possible: the group of motions of a 

spacetime, like the Poincar~- or the de Sitter groups; the conformal 

group of the spacetime; another type of symmetry group, like the dif- 

feomorphisms in general relativity. For present day quantized theories 

the selection between these answers is easy: before symmetry breaking 

our theories contain only massless fields with conformally invariant 

interactions, for both, long range and short range forces. For long 

range forces we may expect that the observed massless particles appear 

in the fundamental equations as gauge fields without changes due to 

symmetry breaking or confinement. Therefore I will discuss here photons 

and gravitons in manifestly conformal field theory; photons as part 

of a reasonably well understood model, conform&l gravitons as a pos- 

sible step to quantum gravity. 

2. PHOTONS IN CONFORMAL FIELD THEORY 

According to Wigner photons are a direct sum of UIRs of the 

Poincar~-group with mass 0 and helicities I = +I and I = -I. The 

massless helicity 1 UIRs D(1) of the Poincar~-group can be exten- 

ded uniquely to UIRs of the conformalgroup [1].We label the irreduci- 

ble lowest weight representations of SU(2.2) by the U(1)xSU(2)xSU(2) 

quantum numbers (Eo,Jl,J2) of the lowest weight. For helicity 

> 0 the extension is D(I+I,I,0), for I < 0 it is D(I+I,0,1) . 

So photons are the direct sum D(2,1,0) ~ D(2,0,I). 

In field theory the positive energy solution space V of 

DA b = 0 carries the tensor product of the four-dimensional and the 

massless scalar representation of the Poincar~-group. Its reduction 



102 

(I) D 4 Q D(0) = D(0) ÷ [D(+I) ~ D(-I)] +D(0) 

is indecomposable[2]. The full tensor product space V has invariant 

subspaces V D VL D Vg which are not invariantly complemented. The 

Lorentz-condition ~A =0 projects on v L . The subspace Vg of pure 

gauge fields A = ~ A carries a D(0) , the photons D(+I) ~ D(-I) 

lie in the quotient space VL/Vg . The quotient V/VLcarries a D(0), 

the "scalar modes". The arrows in Eq. (I) denote "leaks" from scalar 

to physical to gauge states, that is if we act with group-elements 

on for example a physical state, we obtain in general a linear combi- 

nation of physical and gauge states. Such an indecomposable respren- 

tation (I) with invariant indefinite scalar product is called a Gupta- 

Bleuler triplet. It is the group theoretical structure connected with 

indefinite metric quantization [3]. 

The tensor product in Eq. (I) gives immediately the Pauli-Jordan com- 

mutation function as 

(+) 
[A (y) , A (-) (y')] = -i~ D (+) (y-y') 

and hence a Poincar&-~nvariant free field theory with field operator 

A = A(+)+ A (-) . 

Now we want to extend this free field theory to the conformal group. 

Simply extending the terms on the right hand side of Eq. (I) is impos- 

sible, as the UIRs D(I,0,0) and D(2,1,0) are not Weyl-equivalent, a 

necessary condition to appear in an indecomposable representation [4]. 

The next simple possibility is to extend the terms on the left side 

of Eq. (I). Replacing the vector D 4 by the conformal vector D 6 we 

get 

(2) D6QD(1,0,0)=D(1,1/2,1/2)÷[D(2,1,0)~D(2,0,1)~D(0,0,0) ] 

÷D(1,1/2,1/2) . 

This tensor product can be calculated using minimal weight techniques, 

see appendix. D(I,0,0) is the l-dimensional trivial respresentation. 

A field theoretical realization of this tensor product is easily 

formulated in Dirac's conformal space [5], a compactification of 

space. It is a "light cone" xaxa = 0, a = I, ..,6 R 6 Minkowski in 

with (4,2)-metric and points along rays identified, x ~ ~x, I~0. 

Its principal virtue is, that the conformal group SO(4,2)/Z 2 acts 

linearly on it. The positive energy solutions of 
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(3) Za~aAb = 0, xa~aA b = - 

carry the full tensor product (2); transversality 

(4) x A a = 0 a 

is the "Lorenz condition" which projects on physical and gauge fields; 

the pure gauge field A a = ~a i is a dipole ghost satisfying ~252A=0 [6]. 

The tensor product (2) immediately gives the conformal commutation 

functions as 

(5) [Aa(+) (x) , Ab(-) 
-I 

(x')] :-inab (x.x')+ , 

which clearly contains the physical (transverse) modes, according to 

the decomposition in Eq. (2). These field equations can straightfor- 

wardly be translated in usual flat coordinates yielding five potentials 

A , A+ [3], which satisfy 

-- = (6) [3A ~ ~.A + I/2 []A+ 0, 

[35.A = 0. 

The auxiliary potential A+ is necessary to accomodate the additional 

"scalar" modes. It too is a dipole ghost, []DA+ = 0. The Lorentz con- 

dition (4) gives A+ = 0. If it is imposed the Eqs. (6) become the well 

known Maxwell equations with conformal gauge fixing [7]. 

3. COUPLING TO A MASSLESS ELECTRON 

If we start with classical electrodynamics in conformal space, 

coupled to an external current, 

(7) ~2Aa = Ja' x.A = 0, x.J = 0j 

we get in flat space 

(8) [3A - ~ ~.A = J , 

[3~.A = -4J B. 

Putting JB = 0 is not an invariant condition, unless 

The gauge fixing 8.A = 0 is not invariant by itself. 

J = 0 also. 
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The necessary fifth component JB of the current in conformal electro- 

dynamics could be obtained by introducing an auxiliary dipole ghost [8]. 

Yet if working in conformal space there is a more natural possibility. 

Consider a charged massless spinor with helicity +I/2. There are 

two different field descriPtions for such an object [9]. One carries 

the "neutrino representation" D(3/2,1/2,0) irreducibly, the other 

one has gauge freedom [10]; it carries an indecomposable representation 

(9) D(3/2,1/2,0) ÷ D(5/2,0,I/2) . 

If we form the usual conformal current 

flat space coordinates we find that J 

current of a charged massless helicity 

"gauge current" of the form 

[11] J and transform it to a 
is the usual gauge invariant 

+I/2 field, while JB is a 

JB = (pure gauge) . (physical modes). 

The gauge freedom of massless electrons allows for a conformally in- 

variant coupling. 

For quantization of this electron field we need "scalar modes" be- 

longing to a D(5/2,0,I/2) which leak into the representation (9). 

We have to relax the wave equations to enlarge the solution space. 

There are two possibilities: Either give up the homogeneity condition 

(x~ = -2~) in conformal space and keep the wave equation there [12] 

(but not in flat space!), or work with homogeneous functions, but give 

up the wave equation in conformal space (it becomes the "Lorentz-con- 

dition") [9]. The latter possibility amounts to using the tensor pro- 

duct of the 4-dimensional (semi-)spinor and an "anomalous" scalar re- 

presentation, 

(10) D(-I/2,1/2,0) Q D(2,0,0)=D(5/2,0,1/2) ÷ D(3/2,1/2,0) 

÷ D(5/2,0,I/2) , 

which gives an extremely simple commutation relation 

(11) [Y(+) (x) 7 (-) (x')] = (x x') -2 , + 

The extensions necessary to formulate conformal QED as compared to 

massless Poincar~ QED concern the gauge sectors only. So the physical 

predictions should be the same. Yet there are some curious points: 

The Feynman propagators are not conformally invariant in Minkowski 

space itself, but only in a twofold (or higher) covering. There may 

appear cancellations in perterbation theory in such spaces [13]. 
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And the role of the trivial representation in conformal QED (see Eq. 

(2)) and of the spinor gauge freedom is not fully understood. 

Even so the power of the group theoretical techniques described 

bring a more than formal treatment of conformal spin 2 theories with- 

in reach. 

4. GRAVITONS 

The free positive energy solutions of linearized Einstein's field 

equations (with h ~ = 0, 9~h = 0) 

(12) [3h = ~ T 

carry the indecomposable Poincar~ representation (see e.g. [15]) 

(13) D(0) ÷ [D(+I) Q D(-I)] ÷ [D(+2) ~ D(0) ~ D(-2)] 

÷ [D(+I) ~ D(-I)] ÷ [D(0)] . 

The helicity (~2) states are conventionally interpreted as gravitons. 

The irreducible graviton representations can be uniquely extended to 

D(3,2,0) ~ D(3,0,2) of S0(4.2). We want to extend the indecomposable 

structure (13), which is the one relevant for field theory. First we 

use the second order Casimir operator of S0(4.2) to find the smallest 

tensors in conformal space which can describe conformal gravitons. 

For traceless fields with symmetry (m I, m2, m 3) and degree n , 

which satisfy the subsidiary conditions x.T = 0 and 9.T = 0 it is 

C2T = [n(n+4) - 2m + m I (mi+4) + m 2 (m2+2) + m 2 3 ]T- 

Here m i is the number of boxes in the i th row of a Young symmetrizer; 

m = Zm i. For massless particles with helicity k we have 

C 2 = 3(~ 2 - I). 

So for photons (~2 = I) we would require C 2 = 0 and obtain the pos- 

sibilities • , n = 0 (scalar), D, n = -I (vector), and ~, n = -2 (anti- 

symmetric 2-tensor). For gravitons (12 = 4, C 2 = 9) we get the 

possibilities 

(14) ~, n = *I, ~, n = 0, and ~, n = -I. 
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A symmetric 2-tensor cannot describe gravitons in conformal space! 

Looking closer shows that the an~/symmetric 2-tensor describes pure 

gauge in a spin 2 conformal theory; a mixed 3-tensor (~) with degree 

0 is the smallest tensor to describe conformal gravitons. 

The corresponding field equations are 

b 0, 
(15) ~abc = -~bac' ~abc + ~bca + ~cab = 0, ~ab = 

x~Y = 0, ~2~2~ = 0 

Their positive energy solution space carries the tensor product of 

the dipole ghost D(I,1/2,1/2) and the finite D~ = D(-2,1/2,1/2). 

It can (lengthily) be reduced to an indecomposable 

D(3,2,0) Q} helicity 
(16) D(0,1/2,3/2)÷~D(1,0,2) Q + D(0,I/2,3/2) ~ conjugate ~ more. 

L D ( - 1 , 0 , 1 )  

The subsidiary conditions ~.~ = 0 and xa~a(bc ) project on the two 

Gupta-Bleuler tripletsof conformal gravity, xa~a[bc ] = 0 is the 

"Lorentz-condition". D(-I,0,I) is finite, the ghost D(I,0,2) makes 

the theory nonunita~y, unless it can be prevented from propagating. 

Conditions on the coupling to achieve this have been formulated [14]. 

Here we want to concentrate on the physical content of the theory. 

An equation which projects on the physical and gauge modes, 

(D(3,2,0) ÷ D(0,I/2,3/2) ~ (D(3,0,2) ÷ D(0,3/2,1/2)) is in flat space 

coordinates 

(17) 
v?ru1 

C Ip H ~L~ (~p ~Iv - 3/2 Y~v HIp) 0, 

H ~ 5 -I/2 ~P(~p~9 + Ypv~). 

From this follows (up to terms 

fixing the gauge) 

which can be eliminated by 

(18)  u ~ V t  = 0,  

and from that 

(19)  DH~ v = 0 .  

Due to the last equation, H v was interpreted as the metric of 

Eq. (12) in ref. (14). Yet the physical meaning of the main field 
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remained obscure. We try an approach which is based on new results 

on the tensor product of finite and the massless scalar representation 

of the Poincar@ group [15]. 

Consider the positive energy solution space of Eq. (18), which contains 

those of Eqs. (17,19). It carries an indec0mposable representation 

(20) 
D(+2) ÷D(+I) ÷ D(0) ÷ D(-I) 

D(+I) + D(0) + D(-I) ÷ D(-2) 
helicity conjugate. 

There are two sets of helicity (~ 2) modes. Gauge fixing ~[~I] 

and the conformally invariant equation C = 0 project on 

D(+2) ÷ D(+I) ~ ~ D(+I) 

(21) D(-2) + D(-I) ~ D(0).~ D(-I). 

So conformal gravitons are the "upper" spin 2 modes which are also 

carried by H . The "lower" spin 2 modes are described by 

3~gl~ - ~gl~ = 0. ~I = , Dg = 0, g 

This suggests two possible different interpretations of the fields 

in conformal gravity: 

Metric interpretation Ricci interpretation 

g~ ? metric 

~-part of Christoffel 

H metric Ricci 

C vlp ? Weyl 

Although the metric interpretation gives a direct extension of line- 

arized Einstein gravity, it remains disturbing that the other fields - 

specifically Y - do not play a physical role. In contrast for the 

Ricci interpretation all the fields can be identified with linearized 

geometrical objects. But it no longer is an extension of linearized 

Einstein's theory. Yet maybe this is what we should expect from a 

conformal theory. After all the coupled Einstein theory contains the 

dimensional coupling constant K . If coupling to matter - even to 

massless particles only - we cannot expect to obtain a SO(4.2) in- 

variant theory. The step from "massless" theory to phenomenol0gical 

gravity requires symmetry breaking, as for short range forces. 
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But then, what is the non-linear theory whose linear approximation 

gives our linear conformal spin 2 theory? Weylls theory L = C 2 is 

in linear approximation 

[]Dh = 0 ~ [] R = 0. 

We may have got a unitarizable ~ariant of linearized Weyl theory. 

APPENDIX: Reduction of D 6 Q D(I,0,0) 

The tensor product of finite and infinite-dimensional represen- 

tations of the conformal group (or coverings) were one of the essen- 

tial techniques used above. Here - as an example - Eq. (2) shall be 

derived. In conformal space x 2 = ~abx a x b = x12 +x22 + x32 - x42 
2 2 

+ x 5 - x 6 = 0, x a = IXa, X ~ 0, a basis of the Lie algebra so(4.2) 

acting on scalar fields is 

(AI) Lab = -i(Xa~b-Xb~a) . 

It contains the Lie algebra of the maximal (essentially) compact sub- 

group U(1) x SU(2) x SU(2) with basis L46 , Lij (i,j = 1,2,3,5), and 
+ 

step operators L2 = Li6 ~ i L i 4 .  They r a i s e  or  l ower  t h e  e i g e n v a l u e s  

of energy L46 by one. 

The state 

-I _ -I 
(A2) ~o = x+ : (x 4 + ix 6) 

satisfies L~ ~o = 0, L46 ~o = ~o' Lij ~o = 0, and therefore carries 

a lowest U(1) x SU(2) x SU(2)-weight with quantum numbers (1,0,0). 

Acting with rasing operators L~ on it gives a basis of the irreduci- 

ble representation D(I,0,0). The first few states and their corre- 

sponding weights are 

(A3) x i x+ -2 E (2,1/2,1/2), 

-3 
(x i x.-trace)x+3 6 (3,1,1), ... 

All these states have degree of homogeneity x~ = -~ and satisfy 

the field equation ~2 = 0. 

The 6-dimensional representation is realized on z a , with Lie algebra 
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(A4) Sab = -i(Za~ b -zb~z). 

Its lowest weight is z+ H z 4 + iz 6 6 (-1,0,0), its highest weight 

is z_ ~ z 4 - iz 6 6 (1,0,0), and the other states z i belong to 

(0,1/2,1/2) . 

Now consider the following states in the tensor product D 6 Q D(I,0,0) 

and their respective weights: 

A t = z+x~ I 6(0,0,0) 

A j = z.x -I + z+xjx+ 2 6(1,1/2,1/2) 
s 3 + 

A j = z.x -I - z+xjx+ 2 6(I I/2,1/2) 
g 3 + 

A jk = (zjx k- zkxj)x~2 ~(2,1,0) e (2,0,I) 

+ + + 

Acting with the step operators Mi = Li + Si on them we get the fol- 

lowing s t r u c t u r e  o f  i n v a r i a n t  s u b s p a c e s :  

,,P ,~ 
s -~ ~ g. 

t 

It means for example: lowering from A s we get At, but not the reverse; 

raising from A t we get Ap, but not the reverse, ... We can read off 

the indecomposable structure of Eq. (2). Comparing weight diagrams 

shows that all states of the tensor product appear in the decomposi- 

tion. 
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ON CONFO~LLY COVARIANT ENERGY MOMENTUM TENSOR AND VACUUM SOLUTIONS 
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I. INTRODUCTION 

The conformal group which includes Poincar6 transformations is a 

generalized symmetry group of space-time. By using Noether's theorem 

to a conformally covariant theory, we can obtain canonical currents 
c 

such as energy-momentum tensor T c angular momentum tensor J~ ~, 
K c c and special conformal tensor [I] The dilatation tensor D b~ . 

special conformal tensor, however, is not formally conserved. In order 

to get rid of this defect, the usual way is to add to K c a term 

which does not modify the commutator of the conformal charges [2] [3] 

[4]. Although this technique for the canonical currents is acceptable, 

we feel this method is somewhat artificial. In these canonical currents, 

the energy-momentum tensor from which the other canonical currents are 
c 

composed plays a fundamental role. But T is not conformally co- 

variant. The usual symmetric energy-momentum tensor in general is not 

conformally covariant either. This situation is unnatural in con: 

formal symmetric theories. We shall here propose a conformally co- 

variant energy momentum tensor 0 , in terms of which we can redefine 

the angular momentum tensor, the dilatation tensor, and the special 

conformal tensor. The expressions of these tensors are simple, and 

all these currents are conserved formally [5]-[7]. The various energy 

momentum tensors mentioned above differ from each other by total diver- 

gence terms which do not contribute to the total energy momentum. In 

discussing the vacuum solutions of conformally symmetric theories, 

however, these energy momentum tensors are unequal, and the conformal- 

ly covariant energy momentum tensor is useful in looking for the 

vacuum solutions of field equations [8]-[11]. In this paper we first 

review the general properties of conformal transformations, discuss 

the conformally symmetric theories, and give the expressions of G 

for different fields. The vacuum solutions and vacuum state are 

discussed at the end. 
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2. CONFORMAL TRANSFORMATIONS 

The conformal group includes the following transformations 

Poincar~ transformations 

(I) x' = ^ x + a 

dilatation transformations 

(2) x' = x , 

special conformal transformations 

(3) x' = x + c X 2 

~(x) 
~(X) = I + 2 cx ÷ c2x 2. 

A set of fields ~(x) belonging to a linear representation of 

Lorentz group behaves under the conformal transformations as [12] 

I ~x ' "  ]¼ D O~ (4) ~(x') = Idet ,~-~-~ (^(x) ~(x) ) , 

where Z is the conformal weight of the field. For special conformal 

transformations, we obtain from eqs. (3) and (4) 

' ~(^(x)) ~(x) (5) ~(x') = ~-Z D 

where 

(6) D~ ~(^(x)) = g~ + (cl xO xl cO) lob ' 

Ii~ ~ denotes the spin matrices which satisfy the following commutation 

relations 

(7) [I , Ii~] = g~aI~l + g~l I~o - g~II~c - g~oI~l " 
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3. CONFORMALLY COVARIANT THEORIES 

Consider a Lagrangian which is Poincar@ invariant as well as 

dilatation covariant, then under the special conformal transformations 

it transforms as [13] 

' ~) CIRI, L * -.(~p, ~'~')~_~. = Q4L(~p, + 2 (8) 

where 

(9) RI = -~ (Iol~ 8 ¢6 + i glj ~) 

~ ~L 
(10)  1T = C ~ O  ~ ) -  ~ 

ourselves to the cases where R 1 = 0 and R 1 = ~°Rol. We restrict 

Here R i is some function of ¢~(x), and has the conformal weight 

iR = -2. The field equations will thus be conformally covariant. 

Below we list the Lagrangban L for different fields. We confine 

our discussion to the kinematic terms of L only. The more general 

situation, which includes several fields and conformally covariant 

interaction terms, is a straight-forward extension of the same formal- 

ism. 

Real scalar field 

1 )#~3~@ 1 2 
(11) L = - y R = ~ ,g~v~ , 

spinor field 

(12) L =-5 T~ R = O, 

vector field 

I F~ R (13) L =-7 Fp~ = O, 

second rank symmetric tensor field [14] [15] 

(14) I 2 2 ~ ~ I 2_~ h~ h~O L = - ~(3 h ~) +~ hp~ h +~(~ h) 

I I plhl_ Rp~ = ~ [y g~(h 1)2 + 2 h h h ] 



114 

second rank antisymmetric tensor field 

I 3~A~m (15) L = - ~ (3jA ~) ~ + 3 A ~3~A ~ + 3 A v 

I 2 AvX ] R v = ~ [3 g~v(Aol) - 4 A i 

The canonical currents using Noether's theorem are 

c L - ~ V ¢  ~ (16) T~v = g~v 

c 
(17) J = x I T c c + ~ ~ivl B%6 ~ - x TI 

c x v c ~ ~ ~ ~a 
(18) D = T V + 

c 
(19) K c _ 2 xvX% T C _ ~(ZXv #~ @B). = x 2 T ~l 2~ - xlI l~ ~ 

Inserting eqs. (11)-(15) into (16)-(19) respectively, we obtain ex- 

plicit forms of canonical currents for different fields. 

4. CONFORMALLY COVARIANT ENERGY MOMENTUM TENSOR 

The conformally covariant energy momentum tensor has the form 

[5]-[7] 

(20) 

1 32 313 p R%p) 1 ~P 3P - 2 ( R~V + g#v + ~ ( 3  Rpv+ 3 v Rp~) 

I 32) RXX 
- ~ (3 ~v -g~v 

and 

(21) @'~v = ~4 D IO 01 ~ , 

where 

(22) Io l ~ 1 x~c I) ~ g l x o D v = g~ g~ + 2 (c x - g v + 2 (c o - xvc ). 

Furthermore, we can verify that @ V has the properties 

(23) 3~@ v = O G~v = @v~ @~ = 0 . 
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9 

Now one can redefine the other conformal currents in terms of 

as follows 

(24) J~vk = xl@~v - xv@~k 

(25) D = XV(9 

(26 = x=@ - 2 x xl@ i . K~v ~v v 

It ~s easily seen that all these conformal currents of eqs. (24)-(26) 

are conserved due to eq. (23). 

Substituting eq. (20) into eqs. (24)-(26), we have 

(27) = j c P{X 1 - x G J~vl ~vl + ~ G[p,~]v v [p,~]l 

I + ~ (gpl R~v - g~IRpv ) + 1 (g~vRp I _ gpvR X) 

I 
+ -6 (g~l g~p - g0lg~)~)Rd J} 

(28) D 

(29) K 

c + ~P{x2 G[ } 
= D O,~] v 

= K c + 3p{x 2 G[ - 2 x xlG[o ~V p,~]V ,~]I 

+ xpR ~ - x Rpv + g~ XXRp~ - g vxXR 1 

I + ~ (x gpv - Xpg~)R °} 2 R 

where 

(30) G[O,~]V 
I = - ~ (Hp[~,v] + H [v,p] + Hv[~,p]) 

(31) HpE~,v] (z ~ + I (3vRp~ - R + gp ~XRxv = ~T ll~v~ <b~ ~ ~ Ph~ 

I _ ~v)R a 

The conformal currents @~v' J and D differ from the original 

canonical currents T c c~Vl ' c ~ ~v ' Jbml , and D only by the total diver- 

gence terms which do not contribute to total charges. As for K 
c ~ and K , in addition to the total divergence term, there is another 

term 2 R which exactly cancels the nonconserved term in K c and 

keeps K conserved. 
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Substituting eqs. (11)-(15) into (20) respectively, we can write 

down the explicit expressions for different fields. 

For scalar field 

I 2 1 ~v ¢ 
(32) ¢~v = - 6 g ~ ( ~ P ¢ ) ~  + ~ ~ ¢ ~ v  ¢ - ~ ¢ 9 

which is identical to the improved energy momentum tensor [16] 

spinor field 

(33) @~V = 4 

vector field 

I F p% - F FvP, (34) (9~V = - -4 g~v Fp% Pl~ 

second rank symmetric tensor field 

3si I I ($~h B I ~lh~B~ hB X = 3.h ~)2 _ )2 + 

I I ~h~ BhB~] 2 B + T~(3lh)2 + ~ + ~ 3~h ~ h ~ 

4 4 + ~ ~h B~sh e _ ~ ~h v~Bh6 ~ + 8 ~ h~B~ h ~ 

2 $ h $ h- 4 4 

+ "32 ~ h c~6hBo~ + -32 ~vh c~6h8c~ + 61 ~ h 9ahcm 

1 I ~h~ h I + 6 ~vh~C~ha~ - 6 ~ va  - 6" ~ h  ~vh a 

[haB 1 ~ 2 D ~ t h x  a 1 h 
+ g~v (-9 ha~ - "3 + 2 ~o~ ~6 

I ~Xsphl p 1 ~2h) ] 
+ 6 gc~ - 9 gc~6 

I 2 ~6h~ ~ I ~v~ch + 2 Bh~v ) + h (-~ ~2hvo ~ - -~ ~) - "6 "3 ~)O~ ~ 

+ h C~ 1 2 ~hBc t  _ 1 ~ ~ h + 2 ~ B h ~ )  V (~ Z~h - ~ $ 6 ] 8~ 

+ ha6 (2 ~ 2 I 4 3 ~ ~ hBv + ~ 3 3 hB~ - ~ ~ ~ h ~ - ~ ~ 8sh ) 

I ~ 2 h + I ~h I ~O~ h I + ~ h v ~- h D ~V - 6 h ~ aV - 6 h ~v~h~ 

+ ~ h  ~ 
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second rank antisymmetric tensor field 

(36) @ = g~ [_ -~13 (~IA 6 )2 + 3 ~aAl6 ~k A 8 + (~A 6)2 

- ~ A ~6 ~2A + 2 AXe~6~xAs~] 
3 ~6 

8 ~ Aa~ - A~B~ A - 4 ~vA ~6 + ~ ~vA ~ 4 ~ ~ ~ ~A~B 

8 ~ AV - 4 - 2 ~ A ~ ~6A6~ + 6 ~A 6 ~eA~ 6 ~8 Ave 

A ~ ~6A6~ - 2 A ~ ($ ~ A~8 + ~ ~A~6) - 2 ~m 

+ ~ A ~6 ~ 9 A 8 - 2 A ~ Ae6 - 2 A m 

$~A - 3 A eZrA - 2 A 8~a 

2 A ~ ~e 

5. VACUUM SOLUTIONS AND VACUUM STATE 

In discussing vacuum solutions of the conformally symmetric 

theories, the conformally covariant energy momentum tensor e 

plays a fundamental role. Since G has the properties of eq. (23), 

the general form of G can be expressed as [10] [17] [18] 

(37) @~v = (4 T T v - g ~  T l T l )  e ( T )  

I Here we take T = ~ cx 2 + dx + e as a general parameter and 

~T 
Tl = ~x x . C o n s e r v a t i o n  o f  @g~ i m p l i e s  t h a t  

X " 
(38) T x T 0 + 6 c @ = O , 

where dot refers to differentiation with respect to the parameter T . 

It is easy to see that there are only two solutions of eq. (38) 

(39) 0(T) = 0 instantonlike 

const 
(40) @(T) meronlike . 

In both cases, we have E = Id 3 x @oo = O (for eq. (40), ~o ~ O) , 

i.e. they correspond to vacuum solutions. Many conformally symmetric 

theories are known to have these types of solutions. 
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The fact that E = 0 implies that the classical vacuum solutions 

can be the candidate for the vacuum in the quantum world. Instead of 

the naive vacuum state IO> , a new vacuum state I0> can be introduced, 

in which the vacuum expectation value of quantum field ¢(x) is [19] 

[20] 

( 41 )  <Oi$(x) [O> = ¢c£(X) 

$(x) is composed of two parts 

(42) ¢(x) = ¢cz(X) + ¢' (x) , 

where ¢ci(X) is the classical vacuum solutions of conformally symmetric 

theories, while ~' (x) is the quantum fluctuation around it. Both 

$(x) and ¢' (X) can be quantized in the Heisenberg picture by 

(43) ~(x) = I & Id3k [a~ (t) e i~'~ + a~(t)-+ e-ik'xl 
(27) 2 2 ~  

(44) ~' (x)= I _3 I d3k [~ (t) e i~'~ + c~(t) e -i~'~] 

(2~)2 /21~1 
with 

~+ 

(45) [~ (t) , a~, (t) ] = @(~ - ~') 

(46) [~ (t) , c+~, ( t ) ] = 6 (~ - ~') , 

and 

(47) [~ (t) = f~(t) + ~ (t), 

where f~ (t) is the Fourrier components of ¢ci(X) 

I I d3k [f~ (t) ei~'x f~(t) e-i~'x] " 
= 3 + (48) *Ci (:X) (2~) T /2l~l 

From the definition of IO> of eq. (41), it follows that 

(49) ~ (t)18> = 0 

(50) a~ (t)IO> : f~ (t)16> , for all 
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The new vacuum I0> , being an eigenstate of the annihilation operator 

~ (t) with eigenvalue f~ (t) , is a coherent state which can be 

expressed as [21] [22] 

I 
( S l l  = e - llfll e ( a * f ) l o >  , 

with 

152) < 6 1 6 >  = , 

where 

(53) 

(54) 

_+ 

(a+f) = /d3k f~(t) a~ (t) 

II-fl[ = /d3kf*~(t) f~ (t) 

Eqs. (48) and (51) give the relations between classical vacuum 

solutions on the one hand and quantum vacuum states on the other hand. 

If one knew the vacuum soiutions, then in principle the vacuum states 

could be obtained. Partial information about classical fields might 

yield some insight into the quantized theory. As these solutions are 

nonperturbative, it is hoped that they may reveal new physical con- 

figurations which cannot be reached from standard perturbation theory 

in quantum world. 
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I. Introduction 

Several authors [1-5] have introduced non-local variables to describe gauge field theories. 

Their principal motivation is to exhibit the non-local behaviour of these theories, feature 

that  is difficult to see with local fields like the connection ~/a or curvature field Fab. 
A typical example of this non-local behaviour constitutes the Bohm-Aharonov effect [6], 

in which the outcome of the experiment is best described in terms of 

H =- exp (i /c'~a dxa ) (1.1) 

where qa is the Maxwell connection and C is a closed, unshrinkable loop. 

Another motivation for introducing non-local variables is t o  study global properties of 

Yang-Mills theory like the scattering matrix between "in" and "out" states. To study 

this problem one begins by using the conformal invariance of Yang-Mills equations to 

I = ~ 2 r l a  b a s  work in compactified Minkowski space, that  is, to use a rescaled metric gab 
! the background geometry. The scalar field 12 and metric gab are assumed to be smooth 

on a compactified space consisting of Minkowski space and two boundaries I +. These 

boundaries are hypersurfaces where f~ = 0 and represent the idea of infinity along null 

directions [7]. 

The method of asymptotic quantization at null infinity [8,9] uses this framework of con- 

formal geometry as the starting point for a quantization procedure for fields that  admit a 

regular extension onto the boundaries 2" +. The main advantages of using this method are 

(a) it provides a rigorous limit to the concept of t --+ +c~ for massless fields by introducing 

the null boundaries 2" + and I - ,  and (b) only the radiative part  of the field is projected 

Alexander yon Humbolt  fellow. 
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onto these boundaries. Thus, one quantizes the two radiative degrees of freedom which 

arise naturally in this formalism. The Hilbert spaces of "in" and "out" states can then 

be obtained by working on the boundaries I -  and I + respectively. Finally, to obtain 

the S-matrix one further needs the field equations to generate the dynamic of the system 

and to link the "in" and "out" states introduced before in a kinematic procedure. This is 

usually done by working with an intermediate local field but it could also be accomplished 

by introducing a non-local variable defined along null geodesics (which go from I -  to I+) .  

Itr is the purpose of this note to suggest that the holonomy operator H of the Yang-Mills 

connection is a good variable to describe the effects mentioned before. 

In Section II we introduce this variable H, give formulas relating the holonomy operator 

with the connection and curvature tensors, i.e., how to obtain one in terms of the other, 

and write field equations for H which are equivalent to the source free Yang-Mills equations 

[4]. It is interesting to note that the field equations couple H to the free data A given at 

I - .  That is, the free initial data at I -  acts as a source term for the field equations for 

H. This is particularly useful in a quantization procedure since this gives the link between 

the "in" fields (constructed out of A) with the field H at a point of Minkowski space. This 

feature is used in Section III to obtain the quantum holonomy operator H. For simplicity 

we restrict the discussion in this section to the Maxwell case. Some remarks about the 

general case as well as the construction of the S-matrix are given at the end of the section. 

II. The Holonomy Operator for Yang-Mills Theory. 

In this section we want to introduce the holonomy operator associated with the Yang- 

Mills connection. Apart from some necessary definitions and technical details condensed 

together at the beginning of the section, there are two questions we want to analyze. First 

we would like to know the relationship between this new variable and the local fields, how 

to write one field in terms of the other. Second we would like to write down field equations 

for the holonomy operator which are equivalent to the Yang-Mills equations. By solving 

both problems one proves the full equivalence between the holonomy operator and the 

Yang-Mills field. 

Since answers to these questions are presently available in the literature [4] we will only 

indicate the main results obtained without proofs. When needed, a rough idea of the 

approach taken to a given result will be presented. 

a) Definitions 

The Yang-Mills field is usually given as a connection A "la B o n  a principal fiber bundle, with 
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a space-time coordinates (base manifold) and A, B fiber coordinates. For simplicity we 

will drop the fiber indices and think of ~/a as a matrix valued form. In the same way a 

vector V A (in the fiber will be denoted by V). 

Given a closed curve ~, on the space-time and gauge connection ~a, the parallel propagation 

of an arbitrary vector V, initially at x a, around ~ is a linear map that is described by the 

holonomy operator. That is, the parallely propagated vector V I (on the fiber over x a) is 

related to V 

V '  - V = V H  (2.1) 

where H is the holonomy operator. This operator clearly depends not only on the point 

x a but also on the curve A. Although in principle one could work on path-space [5], an 

infinite dimensional space, it is more convenient for an initial value formulation (see next 

section) to restrict ourselves to a specific set of paths chosen as follows. We first pick an 

arbitrary point x a in the space-time together with its future null cone. A specific closed 

path is then constructed by going from x a to I along an arbitrary null geodesic on the 

cone ~x, at I moving an infinitesimal distance along the "cut" of )" (the intersection of 

the cone with I )  and then coming back to x a along a neighboring geodesic on the cone. 

The closed path so constructed is the boundary of a two-dimensional blade that will be 

referred to as A~. This "triangle" Ax has a surface element £[aMb] with £a the tangent 

vector to the null geodesics and M a the separation vector between neighboring geodesics. 

The set of all paths constructed as above form a six-dimensional space. Two dimensions 

are needed to specify the closed paths associated with a fixed point x a since the intersection 

of the future light cone of x a with I is a closed two-surface. The remaining four dimensions 

arise by allowing x a to move on the space-time. 

Since I has topology S 2 × R one can assign "natural" coordinates (u, ~, ~) to it with 

- c ~  < u < +c~ the time coordinate and ~, ~, sterographic coordinates on the sphere. One 

can then use g~ to label the intersection of £x with I .  Thus the six-dimensional space 

is coordinatized by ( x  a, ~, ~). On this six-dimensional space we introduce two types of 

derivatives, a space-time gradient, Va and the "edth" derivative $ (and its conjugate ~) 

on the sphere. For a precise definition of this derivative see [10] but essentially $ ~ a 

b) Relation between H and qa,  Fab. 

We would like to give an explicit relation between the holonomy operator and the local 

fields. To write down H in terms of qa or Fab we need the parallel transport theorem for 

non-Abelian connections [11] which states 

f O S  "~la dxa  = / S  FabdS  ab. (2.2) 
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The two main differences between (2.2) and ordinary Stokes theorem are: First the surface 

S is constructed by a one-parameter family of curves which cover the surface. Second, the 

symbol denotes the restriction of the non-Abelian connection or curvature to the unique 

lifting of each curve [11]. By choosing S to be Az we immediately obtain H in terms of ~a 

or Fab" If follows from its definition that H is equal to the left side of (2.2). Thus, using 

dS  ab = ~.[aMb]ds d~ we obtain 

H ( x ,  ~, ~) = [ o o  Fab £aMb ds. (2.3) 
J 8  0 

We now want to study the converse problem, that is, how to obtain the connection or 

curvature in terms of H. For that it is convenient to introduce the null plane coordinate 

system [12] (£a, ha, ma,  #ta) in terms of which the Minkowksi metric reads 

~?ab = 2£(anb) - 2m(arnb). (2.4) 

One can easily show that the deviation vector M a can be written as 

M a = (s - s o ) m  a, (2.5) 

where s is an affine length along the geodesic £x (so corresponds to xa).  Using the radon 

transform of (2.3) one then obtains [4] 

"~am a = £ a V a H  = D H ,  (2.6) 

_~ab£arn b = D2 H.  (2.7) 

The other components of the connection are obtained by taking $ and ~ derivatives on (216) 

[4]. Equations (2.3), (2.6) and (2.7) show the equivalence between the non-local variable 

H and the local fields "Ya and Fab. 

c) The field equations for H. 

If one defines the self-dual (anti-self-dual) part of Fab as 

=_ Fab iFh (2.8) 

F* I e F zd where ab = 2 abed , then the source free Yang-Mills equations and the Bianchi identities 

for the curvature tensor can be combined together into a single equation, namely 

V[aFb~ ] + [F[~ab , ~z]] = 0. (2.9) 

The idea is to impose equations for H which are equivalent to (2.9). A direct way to ob- 

tain such equations is to use (2.6) and (2.7) to reexpress (2.9) in terms of H [4]. However, 
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for asymptotically simple Yang-Mills fields [13] one can follow another approach that has 

several advantages [4]. First, it couples the holonomy operator to the free radiation data 

at I .  Second, for the self-dual (or anti-self-dual) Yang-Mills equations one obtains linear 

equations for H. Third, for the full Yang-Mills equations H couples only to its complex 

conjugate/~. Finally, to write down a scattering theory one should start with asymptoti- 

cally simple fields, thus this approach provides the field equations for this class of solution 

of Yang-Mills equations. 

To obtain the field equations for H one starts by introducing a three-dimensional volume V 

constructed as follows. It is a pencil of null rays with starting point x a bounded by a cap on 

I -  and the triangular regions Az(~', ~), Az(~, ~+ d~), Ax(~ + d~, ~) and Az(~" + d~', ~+ d~). 

One then restricts (2.9) to the lifting of the curves £z on this pencil of rays V and integrates 

the ^ versions of (2.9) on this volume V. (Note that for a field that is not asymptotically 

simple this integral will diverge.) Finally, one uses the relations (2.3), (2.6) and (2.7) to 

reexpress the integrals in terms of H. A detailed derivation can be found in [4]. The final 

results for Maxwell, self-dual Yang-Mills and general Yang-Mills are respectively 

~H = -~A  (2.10a) 

~H + [H, fi~] = -Off. (2.10b) 

$II+[H,i]+J(H,B) = - 0 i +  [),.4] (2.10e) 

with .  being £ ,  J = f~X~[D2H, s2D/t  - s[-I]ds and A the restriction of the connection to 

I .  Note that  A in (2.10b) and (2.10c) is a matrix rather than a scalar. 

d) Comments 

(1) The right side of (2.10) is the free data given at I - .  That  is, A ( u ,  ~, ~) is a complex 

matrix-valued function that contains all the information of the radiative part of the Yang- 

Mills connection. This fact is specially important in a quantization procedure since one 

starts with only the radiative degrees of freedom. 

(2) The data A when restricted to the cut of x a acts as a source term in the field equations 

for H. We recall that the cuts of x a in Minkowski space are described by the function 

U = xa~a(~ ,~ ) ,  where ~a(;,~) are the four spherical-harmonics Y00, Ylrn ,  m = 1 , 0 , - 1  

written in terms of ~', ~ [12]. Thus the restriction of A to the cut is given by A ( u  = xa~a,  ~, ~). 

The idea then is to seek regular solutions of (2.10). 

(3) For the Maxwell case this is not difficult since the ~ operator has a simple Green's 
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function K on the sphere given by 

1 (1 + ~#) 
K(~' , ,)  = 4~r (1 + ~)(g" - r/)" 

Thus, the general regular solution of (2.10a) can be written as 

= f g ( x ,  xt, g).]l(x!)d3x 
JI 

with 

(2.11) 

(2.12) 

K(x,  x', ~) - ~' K(~, ~')5(u - xaga). (2.13) 

Note that the Minkowski points x a enter (2.13) as parameters. The Maxwell field Fab can 

be obtained using (2.7), i.e., 

Fab£arn b = D2H = / ~ '  K ~(¢aga)2dS'l (2.14) 

where .~ 0ii -- ~-~. Equation (2.14) is the Kirchoff formulation of Maxwell theory. 

(4) By imposing a self-duality condition on the Yang=Mills field one obtains (2.10b). This 

is a linear equation for H whose solution will obey Huygens' principle. It will only depend 

on the data given on the cut u = xa~a. For a general Yang-Mills field the solution will not 

only depend on the cut but also on the part of I -  lying below the cut. This shows the 

non-Huygens nature of the field. 

(5) H is a space-time scalar which is invariant under gauge transformation that go to the 

identity at null infinity. 

(6) One can implement an iteration scheme of (2.10c) based on (2.105). That  is to say, 

one regards (2.10b) as the non-interacting field equation for a self-dual field H and the 

commutator between H and _~ in (2.10c) provides the coupling or interaction with the anti- 

self-dual part _~. The iteration scheme is then to begin with a self-dual solution (H0,/t0) 

and use J(Ho,/~'0) as a source term for the next order in a perturbation expansion. 

(7) The proof that (2.10c) and (2.9) for regular fields are equivalent is given in [4]. It 

amounts to write the Yang-Mills equation in the gauge and then shows that the third D 

derivative of (2.10c) is identical to the standard equations. 

(8) One can generalize these results for a Yang-Mills field in an asymptotically flat space- 

time and for the gravitational holonomy operator of an asymptotically flat space-time 

[14]. 
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III. Some remarks about quantization of H. 

As was mentioned before, Eqs. (2.10) couple the holonomy operator with the initial free 

data A. Since in asymptotic quantization procedure [8,9], one gives canonical commutation 

relations (c.c.r.) for the fields at 2.+ (in this case A(u,  ¢)) our formulation of Yang-Mills 

theory seems to fit very nicely with with approach. The field equation (2.10) provide the 

link between the fields at 2. and the fields at an interior point x a. 

We will divide this section in three parts. First we will give a brief review of Ashtekar's 

method of asymptotic quantization at null infinity. We will then apply this method to 

our fields A and H,  restricting ourselves to the Maxwell case and leaving some comments 

about the general case at the end of the section. 

a) Quantization of the Maxwell field at null infinity. 

Since Maxwell's theory is conformaUy invariant, one can define an asymptotically fiat 

Maxwell field as one for which the connection "~a and curvature Fab have a finite extension 

to 2. [13]. 

Denoting by Aa the restriction of this connection to 2. and fixing a gauge by setting Aan a, 

the component of Aa along the generator na~ equal to zero one can easily see that  all the 

information about Aa is coded in the complex scalar A defined before [13]. Thus, the two 

radiative degrees of freedom of an asymptotically fiat Maxwell field are easily picked up 

via this formalism. 

To implement a quantization procedure for the fields at 2. we first introduce a sympletic 

structure 

i2(A1, A2) = ~ (A1LnA2a - (LnA~)A2a)d3I  (3.1) 

where Ln is the Lie derivative with respect to the null generator n a of 2". Next we intro- 

duce operator valued distributions A_ a at )" satisfying the following canonical commutation 

relations 
$ 

[A(A1),A(A2)] : n~(A2,  A1) (3.2) 

where A(A1) -= U(A1, A). 

We now want to decompose the field operator A a into its creation and annihilation parts. 

For that  we have to split the test fields Aa into positive-frequency and negative-frequency 

parts. This can be done unambiguously since the integral lines of n a provide a natural 

definition of a "Killing time" u. Thus, Aa can be wri t ten as (suppressing the angular 

coordinates) 

Aa(u) = Aa(w)e-iWUdw + Aa(-w)e+iC°Udw : A+a + A a.  (3.3) 
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Note that  A a = A + since the Maxwell connection is real. Thus,  the positive-frequency 

par t  determines the whole field (this will not  be the case for a complex Maxwell field). 

We now define the annihilation and creation operators as 

a(A)  = A ( A + ) ,  a*(A) = A ( A - ) .  (3.4) 

One can easily check that  the only non-trivial c.c.r, are 

[a(A1), = +) # 0 (3.5) 

where we have used fl(A1 +, A~-) = f~(A1, A2)  = 0. Note tha t  the norm (,) defined in (3.5) 

is positive definite, i.e., 

// (A +,  A +) = wA(w) .4 (w)dw > 0. (3.6) 

Hence we can use this norm together with the operators a and a* to construct  an inner 

product  space. 

b) The quan tum holonomy operator.  

We would like to apply the quantizat ion procedure outlined before to our fields A and H. 

First we will use (3.2) to write commutat ion  relations for A and its associated creation, 

annihilation operators.  In the process we will obtain a natural  splitting of the Hilbert 

space. Then we will show how to obtain the field operator  at an interior point x a in terms 

of the "free" operator  A. 

If one defines the (singular) operators A(u,  ~) and A* (u, ~) as 

A a = Affaa + A * m a ,  (3.7) 

then the only non-trivial c.c.r, for A, A* arising from (3.6) are 

[A(u, ~), A* (u'~')] = e(u - u')5(~ - ~'). (3.8) 

It is not  surprising tha t  the c.c.r. (3.8) are non-local since they are given on a null 

ra ther  than  on a space-time hypersurface. This is precisely what  one would obtain in the 

commuta t ion  relations for Maxwell connections "~a(X),'%(x I) if one writes A F ( X  - x ~) for 

(x - x') a null Vector [15]. 

The main advantage of writing A a as in (3.7) is tha t  one splits the connection into its 

self-dual and anti-self-dual parts. Tha t  is, A(A*) generates a Maxwell curvature tensor 
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Fa~(F~) that  is an eigenstate of the helicity operator with helicity ~ = + 1 ( - 1 )  [17]. Thus 

by working with A and A* we obtain a natural decomposition of the helicity eigenstates. 

To see this more explicitly we introduce an orthonormal basis A~ + and 

*=t=a = annihilation operator of a state a with helicity s = +1. 

a~= a = creatl operator of a state a with helicity s = +1. 

One can easily s t  .w from (3.5) that  these operators satisfy 

[a,~, a,,~] = L ~ ,  ~,,~1 = 0, [~,~, a:,~l = ~ , , ~ .  (3.9) 

That  is, the Hilbert space consists of the direct sum of the Hilbert spaces with helicities 

+1 and - 1 .  

Finally, the relation between A, A* and as, , a*, is given by 

A(A~) = ~_~ + a ~ , A * ( A ~ )  = ~+~ + ~* (3.10) 

One sees from (3.10) that  A acting on an arbitrary state will give a positive helicity 

construction by creating a positive helicity particle (with a~_) and destroying a negative 

helicity particle (with a - ) .  

We now want to define the holonomy operator H.  We recall that  (2.9) gives the relation 

between the classical H and A. Thus associated with an orthonormal basis of positive 

frequency Aa + there will be a basis Ha + defined by 

H+ =- I t  K(x,  x', g)A + (x')d3 x ', (3.11) 

which will satisfy the field equations [4]. The quantum operators H_, H* are then defined 

a s  

- +  * H_* - +  * H - -  ~(n:~_~ + H~ ~+~), ~ ~ ( H ~ % + ~  + H~ ~_~) (3.12) 
O~ Ce 

Note that  H = H(x ,  ~). Although one could smear out the x dependence of H by integrat- 

ing with a test function f ,  there would still remain the ~ dependence which parameterizes 

the S 2 family of null plane coordinate systems [18]. 

In a completely equivalent way one could have taken the - version of (2.9) as our definition 

of H_. By expanding A in the orthonormal basis Aa + one can easily show that  this yields 

(3.12). 
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c) Comments 

1) The construction outline before applies equally to I + and I - .  

Ain and Aou t. Furthermore (3.12) gives a link between the in and out fields via 

Thus one can define 

Aou t lim D H  = lim ~ ( D H + a a - a  + DH,~ a+a)i n (3.13) 
x_..,i + - -  x_..,i + 

which in principle determines the S matrix of the problem [19]. 

2) If one explicitly carries out the calculation of the S-matrix one discovers that it is 

trivial. This is not, as one may simply assume, a consequence that we are dealing with 

source free Maxwell equations. It follows from the way we choose the appropriate A + 

to define our Hilbert space. Those Aa + must satisfy [9] 

lira A+(u)= lira (3.14) 

Even if one considers interactions with sources one can show that data satisfying (3.14) 

produces a trivial classical scattering of charged particles [20]. Thus, to construct our 

Hilbert space one has to rule out very interesting free initial data, like the one who 

yields a class of Lienard-Wiechert solutions [16] producing non-trivial scattering. If one 

relaxes the finiteness of the norm condition one can produce a non-trivial S matrix for 

the in and out states. 

3) It has been shown by Ashtekar [9] that in Q.E.D. one has to abandon the concept of a 

Hilbert space for the Maxwell field if the corresponding Dirac state is any other than 

vacuum. Although this problem cannot be treated in the context of our formalism (the 

massive Dirac equation cannot be made regular in a neighborhood of I by a conformal 

transformation) one could study the problem of a massless Dirac or Klein Gordon field 

coupled to the Maxwell field. 

4) In principle the general Yang-Mills case could also be considered using the formalism 

outlined here for the Maxwell case. However, some technical difficulties arise in the 

non-Abelian case which will be analyzed in subsequent work. As mentioned before, a 

perturbative approach to construct the S-matrix for the general case based on self-dual 

and anti-self-dual decompositions could prove to be useful. The "free field" self-dual 

Y-M particles can be obtained out of solutions of (2.10b). Since these equations are 

linear there is no problem in constructing a Hilbert space for the in and the out states. 

It should be interesting to compute the perturbation graphs obtained by this procedure 

and compare them to the Feynman graphs arising from null quantization [15]. 
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CONFO~L GEODESICS 

B.G. SCHMIDT 
MAX-PLANCK-INSTITUT FUR PHYSIK UND ASTROPHYSIK 

INSTITUT FUR ASTROPHYSIK 
KARL-SCHWARZSCHILD-STR. I 
8046 GARCHING, FRG 

A conformal structure ~ on a n-dimensional manifold M is 

determined by the following equivalence relation between nondegenerate 

metrics of any signature: 

(I) g ~ g<~2g = e2°g , ~: M ÷ R 

In the case of Lorentz metrics, one can visualize ~ as the distri- 

bution of the null cones on M . ~ determines uniquely a reduction 

P(M) of L(M), the frame bundle over M . P(M) consists of all 

frames which are orthonormal for some metric g 6 ~. The structure 

group of P is the direct product of the generalized orthogonal 

group O(p,q) and the I -dimensional group of dilatations. 

A conformal structure ~ determines further a collection F(~ 

of symmetric linear connections over M , by the condition that paral- 

lel propagation does not lead out of P(M) 

The coordinate components of the difference tensor S ik of 

two connections V,~ in F(~) are determined by a l-form b=bidx I 

as follows [I]: 

(2) S~k (b) = ~i~bk+~k~bi - gik g%Sbs 

(gikg~s - -ks 2~g) = gikg if g = e 

c M, there is a l-l-relation between Hence, at a fixed point x ° 

elements of F( ~) and l-forms b C T (M). 
xo 

The purpose of this note is to draw attention to the following 

property of a conformal structure* (n > 2): 

*I don't know where these curves have been defined ~or the first time. 
They are mentioned in Yano's book about the Lie derivative [4]. 
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Given a tangent vector X and a r 6 F (~) , then there 
x x x 
o o o 

exists a unique curve x(%) - called a conformal geodesic - such that: 

(I) x(%) is a geodesic for some r 6 r(~) whose Ricci tensor vanishes 

along x (%) 

(2) £(O) = X x . F(Xo) = F x 
o o 

Furthermore r(x(%)) is unique along x(1) . 

These curves arise naturally via the "prolongations of G-structures 

of finite type [1,2]. More directly they can be described as follows: 

Let V be any connection in F(~) and V + S(b) the connection 

we want to determine along the curve x(l); then if x(%) and b(%) 

are the solutions of the following system of ordinary differential 

equations: 

(3) (V~) i i ~k~i 
=-Ski (b) 

(4) 

where 

of ?: 

(V~b) i -Likxk + I/2 S Z = ik (b) xkb i 

S2k is as in (2) and Lik is equivalent to the Ricci tensor 

] rs 
(5) (n-2)'Lik = Rik 2(n-I) gik g Rrs 

Taking into account how the tensor Lik changes if we change V 

according to (2) 

(6) ~ik = Lik + (n-2)((Vb)ik + bibk + I/2 brbsgrSgik ) 

one can establish [I], that a geodesic x(1) of g 6 ~ is a conformal 

geodesic, if and only if the Ricci tensor of g vanishes along x(%). 

The system (3), (4) can be interpreted to express exactly this condi- 

tion. 

The independence of the curve x(1) and Fx(1) (determined by 

(3), (4)) from the connection V used to formulate the equations (3), 

(4) can be shown by using an invariant definition as in [I] , or 

directly as follows: Let ~ be another connection in r(~), then 

there exists a l-form c , such that 

(7) Y = v + s(c) 
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Hence 

(8) V + S(b) = V + S(b-c) 

Using (6) a calculation shows that b = b-c and x(X) satisfy (3), 

(4) with ? , Lik replaced by V, Lik 

Let ~ be a flat conformal structure (Cabcd = O if n > 3). Then 

the conforma[ geodesics are all the geodesics of flat metrics in ~. 

The concept of c-geodesics can be used to generalize the notion 

of normal coordinate systems from metrics to conformal structures in 

an obvious way: pick F x £ F(~), then the c-geodesics for this F x 
O O 

and the connections along on the c-geodesics determine a unique con- 

nection 6 F(~) near x o. Hence there are near x ° as many conformal- 

normal-connections ~ as elements of T* (M) . Each can be used to 
X X 
O O 

÷ M as usual define an exponential map exp: T x 
o 

The covariant derivatives of the Riemann tensor of a metric at a 

point x O determine the metric uniquely near x O in the analytic 

case [3]. The corresponding property for conformal structures is, that 

all derivatives of the conformal tensor Cabcd with respect to a 

conformal normal connection determine the conformal structure locally 

uniquely. 

All this generalizes in the most obvious way to G-structures of 

finite type. If Z are the horizontal vector fields of the final 

parallelisation, then the integral curves of ~iZi (~i const) project 

onto the generalized geodesics on the base manifold M . 
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SECOND ORDER CONFORMAL STRUCTURES 

J.D. Hennig 

Institut fHr Theoretische Physik 

Technische Universit~t Clausthal 

Clausthal, Germany F.R. 

I. Introduction 

The concept of stepwise AigAa~ o~fa~prolongolions of differentiable objects 

such as tensor fields, connection forms, differential equations, direction fields 

etc. has its mathematical origin in ideas of E. Cartan, connected with the 

investigation of infinite dimensional Lie groups and local isomorphisms between 

differentiable objects /I/. Together with the rigorous formulation of the notion 

of 'higher order contact' within the theory of 'jets' by C. Ehresmann /2/ this 

concept finally led to the fibre bundle formalism of ~-s/~ac/an~s and their pro- 

longations (see e.g. /3/,/4/). 

It is this theory of G-structures which provides the appropriate tools for 

a global and coordinate free description of a wide class of geometrical structures 

especially used in mathematical physics, such as (pseudo-) Riemannian, Galilean, 

conformal and symplectic structures, or non-tensorial objects as linear connections 

and projective structures. In the terminology of G-structures each of these 

examples is of I. or 2. order, the only orders of relevance up to now from the 

physical point of view. 

In the present article we indicate two applications of 2. order structures 

to space time problems. 

Starting with Lorentzian and (Lorentz-) conformal structures as standard examples 

of I. order objects, we consider the following canonical extensions 

- (i) prolongations to 2. o~ structures, 

- (ii) generalizations to i. order af~r~ structures. 

As a natural combination of these two we then construct 

- (iii) extensions to 2. o~ af~/n~z structures. 
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For an application of (i) we sketch the derivation of a ~ey£ gaom2_bzy from given 

causal and projective structures (Ehlers-Pirani-Schild axiomatic). 

Extension (iii) will be used to indicate a geometrical background and program 

for an 0(4,2) gauge IAeo~g o~ g~e~ily, where (ii) and an affine version of Poincar~ 

gauge theory will serve as a guiding line. 

2. Conformal geometry 

2.1. First and second order structures 

a. Prolongation of Lorentz structures: To recall roughly the mechanism of 

construction for G-structures and their prolongations, consider the example of 

a Lo~z m~c g on a 4-dim. manifold M , and let us define the corresponding 

i. and 2. order structures: 

Fix x ° e M and denote by CS(Xo) the set of all coordinate systems 

: M ~ U~-->R~ , centered at x ° ( ~ (Xo) = 0 a ~ ), and by CT the set 

of all coordinate transformations ~ : R4 j V~ ..... > ~4 with ~ (0) = 0 

As a tensor, the coordinate representation g~(Xo) of g in x with respect 
0 

to ~ ~ CS(Xo) does not react to ~ e CT iff the differential ~¢v(O) = S~ . 

Thus, the transformation rule of g~(Xo) only depends on ?. o~fa~ con/ac/ equi- 

valence classes (1-jets) j4 ( 4 ) of transformations ~ ~ CT ( ~ -~. ~ :@==> 

~v(O) = ~ ~,(0) ). Accordingly, g~(Xo) is uniquely determined by the I. order 
• .4 

contact class 3×o(~) of the coordinate system ? ~ CS(Xo) 

We recognize the natural correspondences 

(i) between 1-jets j4(~ ) and regular 4x 4-matrices (~(0)) , 

(ii) between 1-jets j2o(T) and linear frames e(Xo) := ( $~ Jxo) , 

hence identify these notions. Usual composition of mappings yields the group 

(2.1) G~(4) := { j~(~) = (~(0)) / ~ ~ CT I , 

canonical isomorphic to GL(4,~) , and the right action of G~(4) 

LxoM of linear frames in Tx M , 

M 

(2.2) 3×(?) ~x(T ° j~(~) := 3~ T ~4) 

j~(~) 

which means basis transformations in T×M 

on the set 

To define the (i. order) G-structure determined by g , consider the subset 

( ~ ) ~ L ~M which give gp~Xo) in the 'standard form' LOIxoM of all j~ 

~ ~ = diag(-l,l,l,l) Obviously, the right action of G 4(4) then reduces 
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to an action of O(3,1) c G~(4) on L~=M Finally, performing the whole 

construction for each x o e M , we get the usual sub~zno~ L~M of g-~z~s in 

the bundle LM of all linear frames; LsM is the (I. order) G-~ac~ be- 

longing to g , with structure group G = 0(3,1) 

The advantage of this 'jet'-description of LM is to be seen in the possibi- 

lity to generalize immediately to higher order structures: 

We introduce 2. oz~ cor~ec£ c~e~ (2-jets) jz( ~ ) of transformations ~ ~ CT 

(~ ~-~-~ :<~ ~(0) = ~(0) ~ ~y(0) = ~f(O) ) and get the group 

(2.3) Gz(4 .) := {jz(~) = (~¢~(0), ~y(O)) / ~ ~ CT } , 

with multiplication law (chain rule for partial differentiation) 

~S,) ~ ~ ~ r ) , 

~7~:= ~ (0) ~ -- ~ ~ r0~ Hence G~(4) G~(4) ~ A ~ with abelian • , l~ , ~ ~j, .- /v~k ) • = 

invariant subgroup A := {( 0' ~f)~ 

Similarly, we define the 2. order classes j x%(~) for $ ~ CS(Xo) , i.e. 

2. oao~ ~emze~ ~(Xo) at x o , and get a natural right action of G~(4) on the 

fibre L~oM of these frames (cf. 2.2). 

Returning to the local representation of g in x o , we remember from 

pseudo-Riemannian geometry the following facts: 

(i) The existence of 'normal' coordinate systems ? ~ CS(Xo) , such that 

g~Xo) = ~ and also gFv~(O) = 0 ; i.e., the development of g in x ° 

up to i. order (which corresponds to 2. order in the ~'s) is given in a 

'standard form'. 

(ii) Two normal ~ , ~a ~ CS(Xo) always fulfil ( £~ (0)) ~ 0(3,1) and 

~0 ~lOF( ) = 0 where ~ := ~ o ~ CT in a neighborhood of 0 

Translated into the jet-picture, this means: 

2 ZM There is a distinguished subset L @,~M ¢ L~ of those 2. order frames, which 

yield the standard I. order development for g in x ° Moreover, the G~(4) 
z 

action on L~=M reduces to an action of O(3,1) ®{0} ¢ G~(4) on L~,~M 

Gluing together all fibres over M , we end up with the pro£ongrzg2on LaM 

of LM , i.e. the ~z~ o~ 2. o~/~om~e~ over M and its subf~zr~ L~M of 

2. olafea g-~ome~, the prolongation of L~M (cf. diag.(2.5)). We call an arbitra- 

ry 0(3,1) subbundle ~ c L~M pro£onger2, if there is a Lorentz metric g on M 

such that ~ = L;M 
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b. Prolonzati_o~ o_fco_nf_ormal structures: In complete analogy with the pre- 

ceding constructions it is possible to treat a confo~a~af ~tract~, i.e. an equiva- 

lence class [~] of Lorentz metrics, where g, c~, g :~=> g'(x) =_(~(x)g(x) for 

positive /~ : 

The usual coordinate representation of [g] is given via the tensor density 

:= -g~x) (det g~¢(x)) -~ . Hence, in the discussion of Lorentz metrics, [g]%~(x) 

g ~  by [g]~ v we have consequently to replace 

Then, in the results, replace 

on the I. order level: LsM c LM by LEo2M ¢ LM and 

0(3,i) by ¢0(3,1) := O(3,1)®D , 
2- 

on the 2. order level: L~M ¢ LZM by LE@]M c L~M and 

0(I,3) ® {0] by C0(3,1) ~ K ~ , 

where 0 & AZ , and K ~ denotes the 4-dim. subgroup of A ~ given by 

{( 6~v, ~ = ~J~ + o ~y~ -~ ~) / ~ arbitrary} The occurrence of the 

dilatations D in the I. order structure group is due to one degree of freedom of 

the conformal factor _(~ in each x ~ M , the additional occurrence of K ~ in the 

2, order group due to 4 degrees of freedom in the gradient of _~ in x 

As a subset of LM the G-structure L~]M of ~3 simply is the union of 

all L~,M , g' ~ [g] Similarly for the prolongation L~ of L~]M , the 

bu~/~ o / 2 .  order [~]-~s. 

Summarizing all structures and using the obvious natural projections from 

2. to I. order bundles we have 

(2.~) 

LSMc >LE~]M ~ >L~M 0(3,1)®{0} r ,CO(3,1)mK 4~ ~ G~(4) 

! I s t ructure  
groups 

¢----~ L a ~M ~ ~LM ~ ~ G~(4) 

Observe the different dimensionality between ~]M and L~]M in contrast to the 

case Of L~M and L~M , which after all is a consequence of algebraic properties 

of the i. order structure groups C0(3,1) and 0(3,1) , respectively /4/ 

Moreover, each C0(3,1) subbundle in L~M is 'prolonged', i.e. coincides with L~]M 

for suitable [g] 

~._Simmetric connections and_p~oiective structures: From the foregoing it be- 

comes clear , that a ~yn~Iricf~6zac~ corazac~on F is a 2. order object because 

of the 2. order transformation property of its coordinate representation ~(Xo) i 

Following the same lines of reasoning as in the metric case, we look for all 

(~) ~ L~M , which yield a 'standard form' for ~- , i.e. 2. order frames j~ 

(%) J~o ~( T up ~ = 0 This determines ) to linear transformations Thus, we 

get the (2. order) G-structure L~ M , with G = GL(4,~) ® {0} ¢ G~(4) 
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As a simple implication of this construction we recognize: Given a Lorentz 

metric g and its Levi-Civita connection ~ ~ , i.e. g~(Xo) = 0 ~--> ~Xo) = 0 ; 

then, in frame notation, this means for an arbitrary symmetric connection~F 

r = 

In case g is physically interpreted as a space time metric, the elements of L~M 

are precisely the orthonormal local 2r~ag coordinate systems. 

A projacg2ua sg~actaae on M is an equivalence class [~] of symmetric, 

linear connections which have the same autoparallels (as unparametrized curves). 

We get r'e [r] iff ~ (x) = ~ (x) - oz~(x)J$ + o~iTw(x)) for suitable -C~. 

Similarly as for ~%]M = ~J L~IM , g'E [g] , [~] determines (and is determined 

by) the 2. order G-structure LEr]M = L.J Lr, M , rrE _~] , with structure group 

GL(4,~) ~ P~ c G~(4) , where P~ := ~( ~$, ~J~+ ~r~) / V~- arbitrary} ¢ A ~ 

Obviously, 

(2.7) r I L~iM 6 [~] <:> ¢ Lcr]M 

d. WeTl-structures: There are various compatibility conditions between g , 

~g] on the One hand and r , ~-] on the other, which have a clear geometrical 

interpretation and may be of physical interest. 

As a first example, consider a conformal structure [g] and a symmetric connection 

[- such that i--parallel-transport preserves the [g]-light-cone-structure, i.e. 

reduces to the subbundle Lc~]M c LM We then call [g] and r way£ compa- 

and the pair ([g], ~) a Way£ ~£~ucg~4a. The 2. order formulation of this 

condition is straightforward 

(2.8) [g] ' F Weyl compatible ¢----> L[~]M ~ L~M # 

(We write A~ B # ~ for principal subbundles A , B C L~M iff A ~ B # ~ in 

each fibre of LZM Then A~B is a principal subbundle, too, with intersection 

structure group; in (2.8) this group is CO(3,1) .) 

The physical relevance of these notions (cf. sectiSn 2.2.) is due to the 

following well known geometrical fact: r is the Levi-Civita connection of a 

suitable Lorentz metric g' e [g] iff r-parallel transport of a (timelike) vector 

from x E M to x' ~ M along different paths always yields vectors of equal 

lengths. In this case g' is determined uniquely up to a constant scaling factor. 

As an integrability condition this can be understood easily in i. order bundle 

terms: Given a Weyl structure ([g],F) , consider the reduction co r of F to 

~$]M and its projection w c (the classical ~ayl coro~ecY~on) on the D bundle 
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(2.9) L[~]M / 0(3,1) =: W[~]M , 

with covariant derivative DF . The integrability condition then is Drw r = 0 

On a simply connected M this is equivalent to the existence of global wr-compa - 

tible sections, i.e. to the existence of a F-compatible 0(3,1) bundle in Ln~]M 

(given up to the action of an element d e D ¢ C0(3,1) ). 

Also, the prolongation property of an arbitrary 0(3,1) subbundle ~ ¢ LZM can 

be interpreted within this context: Knowing ~ is equivalent to knowing 

(i) its I. order projection, the 0(3,1) bundle ~ ¢LM (i.e. a metric g~ ) and 

(ii) the C0(3,1) bundle [.D c LSM (or the corresponding Weyl structure ( [gf] , ~) , 

hence the Weyl connection w~ on W[z~]M ). 

As a section ~ in W[~]M , g~ determines an ~+ valued equivariant function 

f~ on WC~]M (f~(~ (M)) = I). We get 

(2.10) ~ prolonged <--) D~f~ = 0 ~> r~ reduces to ~ 

2.2. Application: Weyl geometry 

The conditions in (2.6),(2.7),(2.8) already indicated possibilities to express 

relations between geometrical (space time) properties in simple 2. order terms. 

We will proceed along these lines and reproduce a central step in the axiomatics of 

Ehlers, Pirani and Schild /5,6,7/, i.e. the derivation of a unique Weyl structure 

from a given conformal structure [~] (interpreted as the causal or light cone 

structure of space time) and a projective structure IT] (correlated with the 

unparametrized world lines of freely falling massive point particles): 

Assuming the independent structures [g] , IF] on M to be known, the authors 

of /5/ impose the following, physically motivated compatibility condition between 

[g] and [F] : There is a neighborhood U x for each x e M such that in U~ 

each (connected) unparametrized null [g]-geodesic (photon world line) through x 

can be arbitrarily approximated by suitable (connected) [g]-timelike [F]-auto- 

parallels (massive particle world lines) through x 

This ~ pa2~4 compa~if21y of [g] and ~--] turns out to be a condition of 

2. order contact. Hence we translate it into the LZM-picture and get /7/ 

(2.11) [g] ' [F] null path compatible <:> LEZ]M ~h L?p3M ~ 

The existence of a ~ay£ a£~c~ then is guaranteed by 

P~opoa.L,fMo~ Given null path compatible ~] , IF] 

Then there is exactly one linear connection 

[g] , r l constitute a Weyl structure. 

[ r ]  , such that 
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For, the structure group of L~m~ ~ Lc~ ~ =:~ in (2.11) is given by CO(3,1)mK"r~ 

GL(4,~)&P 4 = C0(3,1) The action of GL(4,1R) ®{0} C GZ(4) on ~ then yields a 

GL(4,E) subbundle in Lcr~M , i.e. a connection P'e [~] fulfilling the condi- 

tion in (2.8). Uniqueness is shown similarly. [] 

Moreover, reversing the lines of reasoning leading to (2.10), if we assume the 

existence of an equivariant ~+ valued function f on Wc~M such that Dr'f = 0 , 

then [-' in Proposition reduces to a Lo~an/zmegza/c g'~ [g] , uniquely deter- 

mined up to a scaling factor. 

The example f = mass function (conformal weight -I) has been discussed in detail 

in /8/. 

3. Affine conformal geometry 

3.1. First and second order affine structures 

In a sence, opposite to the prolongations from I. to 2. order structures, the 

'affine extensions' are a combination of i. order objects with '0. order' trans- 

formations (translations). These extensions exist and are canonical for all i. or- 

der G-structures. Applying standard techniques /4/, they can be generalized to 

the cases of 2. order Lorentz and conformal structures, i.e. to L~M and L~4M : 

a. Frame bundles: Consider first the bundle AM = t) A~M of affine frames 

(p,e) , P e TM , e e LM , on M with natural right action of the affine group 

GA(4,E) = T ~ ~ GL(4,E) i) and embedding LM r ~AM , e , > (O,e) Each 

Lorentz structure then induces a sub~ano~ A~M < AM of af/~L%e g-/_rcmm_~; similarly 

for a conformal structure ~] , which yields the subfez~ Ac~M = L2 A~IM , 

g' E [g ] , o f  a f~rLe  [g]-/p_~. 

The bundle LM ~ GA(4,~) , 

action of GL(4,~) on GA(4,R) 

bundle, is canonical isomorphic with AM Correspondingly for AsM 

We use the analogous constructions to define for given g and [g] 

(i) the T~O(3,1) b2wT/a of af~/r~ 2. o~/e~ g-/n~ 

A~M := L~M ~ (T~80(3,1)) , and 

(ii) the 0(4,2) ~anr/F~ of ~f~aa 2. o1~Ze~ [g]-~s 

A[~ := ~0(4,2) 

(where {~] @ K q c C0(3,1)~ K 9 is identical with the 4-dim. abelian subgroup 

of special conformal transformations in 0(4,2) ). 

associated with LM through the natural left 

and also interpreted as a principal GA(4,~) 

and A[@~ 

t) We adopt the notations of /9/; in particular, from now on we distinguish be- 
tween holonomic (~ ,~ ,..) and anholonomic indices (i,j,..). Also, given 
a G bundle P and a G action # on F , we denote by P ~ F the bundle 

-associated with P 
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i) 
With obvious embeddings on the 2. order level, (2.5) then extends to 

(3.~) 

(3.2) 

A ~ M ~  L~M c >Ag~3M~>L4~M ¢ 

~"~"~ L~M ~ ~+ L c ~ ~ LM 

T~80(3,1) ~ . > 0(4,2) 

I ~ 0(3,1) ® {0} ~ ~CO(3,1)~ K ~ ~ )G~(4) 

0(~, i) ~ -~ C0(3,1) ~ ~-~ GL(4,~) 

Observe: (i) Given M , g , [g] , all structures and mappings are canonical. 

(ii) There is no natural 2. order structure for AM 

(iii) There is no projection A~ > A£@~ 

We use the adjective 'affine' for A~M and Ac~IM according to the following 

consideration: 

A;M : Take the standard action ~ of T~8 O(3,1) on ~/n/¢owJ~ ~peca M ° and 

the (vector) bundle T~M := A~M ~ M ° y-associated with A~M Then on each 

The fibre of T~M a flat Lorentz metric gx is induced, i.e. T~r~M ~M ° 

elements of the fibre A z A~M ~I~M c over x now can be interpreted as 2. order 

gx-frames on the Lorentz manifold T~x M . Since A~M ~ A~M , T~M is isomor- 

phic with TM as an (affine) vector bundle. 

A~]M : Similarly, take con~o~o~ space % := 0(4,2)/C0(3,1)~ K ~ (double 

covering of compactified Minkowski space ~ S~x S 3 ) together with its usual confor- 

mal structure [hi induced by the 'linear' isotropy subgroups (~C0(3,1)) of 

0(4,2) 2) Denote by ~ the 0(4,2) action on Mo and define the ~-associated 

bundle ~IM := ~Mz ~ % Then each fibre T£~ M~, carries an induced conformal 
z M structure [g]x such that ~31 x ~% The elements of A z £~],xM then are to 

be interpreted as 2. order [g]x-frames on TL~]~ M Tc~M is bundle isomorphic 

with a double covering of the compactification of a (Lorentz) tangent bundle TM 

i) We use a standard identification of 
groups in ~ (metric (g~) = diag(-l,l,l,l,l,-l)), i.e. 
0(4,1) is given by its fixpoint e~ = (0,0,0,0,0,I) , 
0(3,2) ,, ,, e~ = (0,0,0,0,i,0) , 
0(3,1) ,, fixpoints e~ and e~ , 
T ,, invariant plane ye-y~ = 1 (fixpoint em+e~) 
K ,, ,, y~+y6 = 1 ( ,, e~-e~) 
D ,, , y.i = y~ = y3 = y~ = 0 

2) l.e., by the differential in TxM of the isotropy subgroup in each 

0(4,2) and its subgroups as isometry 

X ~ M e , 
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b. Connections and Cartan connections: In diag. (3.1) we distinguish between 

(affine) 'A-bundles' and the canonically embedded 'L-bundles'. Choose now a con- 

nection form co A on one of these A-bundles (whose structure Lie algebra shall be 

denoted by ~ + ~ ). The 4~+~ -valued restriction ~o L of oo A to the corres- 

ponding L-bundle (structure algebra ~ ) is called a £ ~  co~r~eeg£on /4/ and 

O~ in the decomposition co L = ~+ ~o ~ the ~eagicd paa£ of o~ L 

In the cases of AsM , A~ and A~M we find ~ ~ as an invariant subalge- 

bra of ~+~ As a consequence, ~o~ constitutes a connection form on the L- 

bundle, On the other hand, for A#]M ( ~+~ = 4~+(~o(1,3)+~ ~) = o(4,2) ), 

the subalgebra ~ ~ is not invariant, hence o~ ~ in general not a connection form 

on L~1M 
This difference between connections and the vertical part of Cartan connections 

will be of importance in the following. 

3.2. Application: Conformal gauge theory 

Using the standard building blocks of classical Yang Mills theories (YMT), we 

discuss some geometrical 2. order aspects of an 0(4,2) gauge theory of gravity 

(see also /I0,Ii/), which should be understood as a 'conformal prolongation' of 

an affine version of Poincar~ gauge theory (PGT); cf. /9/ for the Poincar& case. 

The motivation for a concept like this may be associated with the extensions 

---9~@7M in diag. (3.1), where 

( ~ ) reflects the attempt to derive space time properties such as (pseudo) 

Riemannian or Riemann-Cartan geometry from more 'primitive' structure ele- 

ments. Following section 2.2., we consider conformal structures to be 

natural candidates for those elements, 

(~) describes an 'unfolding' of the internal structure of conformal spaces, 

which is maximal in the prolongation sence: there are no higher than 2. 

order prolongations for a general conformal manifold (and which is trivial 

in the Lorentz case: equal structure groups for L~M and L~M ), 

([) corresponds to the necessity to incorporate translations, if one aims at an 

interpretation of the tetrad fields as potentials in YM sence, i.e. as con- 

nection coefficients. 

a. Model_spaces: To crystallize some characteristic geometrical features of 

conformal gauge theory, let us analyse shortly the group theoretical origin of 

classical gauge formalisms. 
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Usual constructions are based, at least implicitly, on a Lie group S = E ® I 

which carries the information of all 'global' symmetries of the theory, I de- 

noting the internal and E the external (space time) part of the group. A 'model' 

for space time then is given as a homogeneous space of E Concerning the gauge 

scheme, the central structure element of the 'global' theory is the ~ valued left 

invariant c~non/ca/ f-fo~ ~ on S (~(X) = X , X ~ ~ = T~S = Lie algebra 

of S ). 

We specialize first to the case E = Poicar~ group, i.e. S = (T~e 0(3,1))~I , 

and indicate the immediate consequences of the existence of ~ . 

Obviously, S has the structure of an 0(3,1) ® I bundle over Minkowski space 

M ° = T ~ = S/O(3,1)@I (with metric go on Mo induced by the 'linear' isotropy 

group of S in 0 e M o ). Treating separately internal and external symmetries, 

we obtain the I bundle V£ := T ~ ® I and the 0(3,1) bundle Ve := T ~ ~ 0(3,1) 

over M = T ~ ; they serve as ao/af ~an/fas on which the (internal and external, 
o 

resp.) gZo~af theory is formulated and which also induces the foca/ structure of 

the general theory (see 3.2.b. for the conformal case). 

The reductions OT~®I and O r~@ o~,~) of ~5 to these model bundles 

induce flat connection forms: the standard conn~c//on to ~ (= ~ part of Or~®7 ) 

on V£ , which yields the horizontal fibration of Vi into 'constant' sections 

O]~(Mo) = a.T ~ ¢ V~ , a ~ I , and the La~i-C/v//a aonaact/o= 00 (= ~(3,1) part 

of ~T~ ~ 0(3~i) ) on V e giving the horizontal fibration of V e into (holonomic) 

sections ~e (M o) = b'T~ ¢Ve = L~M o , b & 0(3,1) , the go-orthonormal or 

'inertial' coordinate systems on M 
O 

In bundle terms, the central notion of g£obaf gauga i~aa~sfo~io~z on V~ 

(Ve) then is given by those bundle automorphisms K which leave the canonical 

structure 004"(uO~811) ) invariant. The group picture describes ~ via re// multi- 

plication in the group V i = T "@ I ( V e = T ~e 0(3,1) ). 

The 'global' formalism now proceeds with the definition of globally gauge 

invariant free (matter) Lagrangians L~ on M ° For this, the 'coordinate 

systems' ~ and ~e on Vi , V e are used. The aovar/en/ (i.e. section inde- 

pendent) expressions for L~ then are obtained via the replacements ~#. )D~ 

in the internal case (applying co $), and ~--+D~ , d~--~ e/~ ~ in the external 

case (using O0 °(3,1} and the ~ part (e%) of ~T~imO(~,l) ). The occurrence 

of (e~) , the 'vierbein fields', in the second case is due to the non trivial 

product structure in V e = T ~ ~ 0(3,1) , i.e. to the coupling of space time 

'T -indices' ~ with 'O(3,1)-indices' i 
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We recapitulated these facts mainly to stress the following: The transfor- 

mation properties of O~ ~ and ~o~(~ t) as cor~zcY~on fo~zs stem from the ~pac~r~ 

group structures of V~ and Ve (invariance of ~ under adv I and ad~O(3,1) , 

resp.). 

A characteristic difference arises, if we consider conformal theory , i.e. 

E = 0(4,2) We regard 0(4,2) =: V as a principal (model) bundle over conformal 

space Mo = 0(4'2)/C0(3'I)~K~ (observe: V Lr~TM ° as a C0(3,1)~ K ~ bundle). 

To find the natural coordinate systems ~ in Mo or, equivalently, to find the 

(holonomic) sections o" in L~3M L corresponding to o'£ and ~e above, choose an 

L z- arbitrary frame e~ e =~o , located at x ~ Mo Then there is a unique confor- 

mal embedding ~ : Mo ~Mo , ~ (0) = x , of Minkowski space, such that 

= j~(~) as a 2-jet. Consequently, for each ~ ~ V there exists a unique (non 

global) holonomic section 0-~ through ~ These [h]-comp~ coo~aga 

sysge~ (and sections) obviously are the conformal generalizations of inertial 

coordinates in M and are to be used for the coordinate dependent formulation of 
o 

global conformal theory. 

To pass to the covariant description, similarly as for V e , one has to utilize 

- (i) the ~o(3,1) +3~ part 00~°(~'I)+~ = (@~ , ~ , -r ~') in ~(4,2) = 

= , @ / , ~ , ~  ) . .~+  ~(3,1)+~+~ ~ of the canonical 1-form ~)O~%z) ( 0~ l Z 

(its kernel in T~V being tangent to 0-~ for each e 6 V ), and 

- (ii) the translational part (~)~) 

The crucial point, contrasting the cases of Vf = T~® I and V e = Tw~O(3,1) , 

then is : 05 ~°(3,t) +~" is the ug,'~!icr_~ p~ of ~ C ~  coarLecY~on on V ; it 

fails to have the transformation property of a connection ([~o(3,1)+4914~ ] ~ 4"). 

Consequently, in a conformal gauge theory modelled on V = Lrh ] o , one is con- 

fronted with a conflict: Either , one insists on the notion of global gauge inva- 

riance and hence has to replace connections by (vertical parts of) Cartan con- 

unlike the usual YM scheme; or, one has to treat L~] ~ as an abstract nections, 

C0(3,1) ~K W bundle and thus looses the geometrical background of the theory. 

Since we represent the geometrical viewpoint here, we reject the second possibi- 

lity. Moreover, the first alternative turns out to be equivalent to the following 

concept : 

To save both, geometry and YM analogy, the aff~aa ~ i o n  of L[~]M ° to 

-- with structure group 0(4,2) seems natural. Then, @o(~,2) the bundle AE~M ° 

extends to an 0(4,2) valued 1-form @ocv,I) on A~M ° , which 

- is invariant under global gauge transformations (automorphisms of 

by holonomic automorphisms of LL~]M ° ), and 

- has the transformation character of a connection form. 

AA M ° induced 
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As a consequence of this discussion, let us choose Af&] o ' together with the 

natural (flat) connection form ~o~) , as a g£o~ ~oda~ ~o~ co~o~ ~7~eo~. 

b. Background structure: In a next step, the 'topological generalization', we 

replace (Mo' [h] ) by a conformal manifold (M, [g] ) locally isomorphic to 

(Mo' [hi) (which means flatness of [g] ). Thus, the rigid geo~caf ~ac/<g~oand 

of our gauge approach finally is given by the 0(4,2) bundle A~]M (~ m -- A~]M o 

in the holonomic sence). This implies that all conformally invariant objects on 
_ 

A£~TM °" , as e.g. ~o(v~Z) or invariant Lagrangians, have well defined natural 

counterparts on Ac~]M In particular, we find a unique (flat) connection ~ on 

A[~TM ,which is invariant under all local conformal mappings of M (and which, 

together with a suitable Lagrangian, may be used for the covariant formulation of 

a 'free theory'). 

£._Anholo_no_mi_c_e~uivalence__pr_in_ci__pl_e ! According to the usual YM scheme we 

apply the 'generalized equivalence principle' (minimal coupling procedure) to 

introduce 'dynamical geometry' on A~M . This means (cf. /9/) to pass from flat 

background ~ to an arbitrary anholonomic " connection form co= ~co ,~, ~ , ~ ) 

on ArA]M~= and to extend the Lagrangian formalism to the field ~ . The 'potential' 
A 

and two symmetry breaking fields ~ , ~ on AK~]M then are used to indicate 

an example for the derivation of a Riemann-Cartan structure on M : 

~._S~mm_e!r~b_r£a~i~g i We introduce the notion of a W-~_fd as an arbitrary ~@- 

valued function ~ on A[~]M , equivariant with respect to the standard 0(4,2) 

M E~ action on E~ . Equivalently, ~ is a global section in AnD 7 ~ . In addition, 

we choose on ~g an 0(4,2) 2nva~c~an~ poXen~ U(y) := ¢ (y~ +~ (y)~ , (y)~:= 

y~y~ := y~g~y~ , ~ > 0 ; hence Uo# may be seen as a function on M 2) 

Eventually, ~ is assumed to yield minimal (U~)(x) for each x ~ M 

Different values for ~ in U then imply: 

> 0 and minimal U fix (y)Z =: k < 0 and for each x eM a ~ orbit 0~,~ 

in E~ which meets ~ :=~ e~ (with de Sitter isotropy subgroup H o := 0(4,1)). 

< 0 gives (y)Z =: k' > 0 and ~ :=~-kY e$ (anti de Sitter isotropy group 

H~ := 0(3,2)). 

= 0 yields (y)Z = 0 and y~ := ~ (e~+eg) , A > 0 (Poincar~ isotropy group 

Ho := T4~0(3,I)). 
o [~M Accordingly, we get an isotropy subbundle ~¢ c A with lO-dim, structure 

group H o C 0(4,2) 

i) ~ is holonomic iff ~ = ~ ; i.e., similarly as in the case of PGT, one 
has to disregard the naturality of ~ when applying the generalized equiva- 
lence principle. 

2) which, of course, must be multiplied by a suitable horizontal invariant 4-form 
on A[~]M if to be considered as part of a Lagrangian. 
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The second symmetry breaking is motivated by a well known analogy in PGT /9/. 

T m We apply the zero ~aclion in [~ or the corresponding Mo valued equivariant 
2. 

function ~ on AE~3M (cf. sect. 3.l.a.) to remove the 'affine' degrees of 

z A~TM . H o ,~ C0(3,1) = 0(3,1) in each freedom; i.e. we reduce to L£~M c ~ 

case for ~ then implies: The W-field , together with the canonical section 

O- o , determines the ~edacgion to ~ 0(3, 1) ~anife 

0 2_ 

(3.3) ~@ := ~ ~ Lc~M 

in LcZ~M . Thus, following sect. 2.l.d,, we obtain a ~Teyl s~uc~ (~g], ~) =~ 

]M and a f.oJ~erd_z raad~£c [g] ~ g~ = i* ( L[~]M (or the correspond- 

ing ~+-function f ~# on WE~TM ). Metric compatibility between both structures 

means D~ f~ = 0 or ~ to be prolonged. The different bundles i+ and ~@ 

(prolonged or not) may be thought responsible for the transformation rules of 

different (i.e. I. and 2. order) types of physical fields, which come into con- 

sideration in a complete Lagrangian formalism on L~]M~ or AE~]M 

e.Ri_em_annl_Ca_rt_an_ str_uc_tu_re_: The reduction~to ~ii L#~]M Agenerates~. various 

fields originating from the connection form o~ = ('~ u~, , ~ , ~') on A~TM 

(sect. 3.2.c.). Because of the complete reducibility of Ad 0(3,1) in 0(4,2) , 

the restriction of ~ to ~ # is a connection form, while the restrictions of 

~ ' ~ ~; In particular, considering the I. or- uo ~ , , are tensorial forms on ~# 

der projections £O"~ and ~o' on L@, M , we return to the framework of PGT. 

Correspondingly, we assume uo' to be regular and interprete it as a dafoaaalion 

pogen//af, which determines a strong bundle automorphism -c • LM ---~LM Thus, 

finally, we arrive at a /l/anann-Ca~/a~ ~/~ac/une M := -C , ~u := -C, ~Ol. , 
i.e., we get a Lorentz structure 

form u> ~ 
j • {yo} , 

(3.4) 

L-M< 

f. Remarks: 

and a ~-compatible (non symmetric) connection 

>~ 

'T/o 
~- {0} 

i ! 

(0 := Ill ~ 0(4,2)/C0(3,1)~K ~ = Mo ) 

The derivation of a Riemann-Cartan structure on M was sketched 

along the lines A~ & M---@~$---~---~ Equivalently, one could start with L~] 
a Cartan connection on LK~]M and perform the reduction to ~¢ via a restricted 

function ~ on LK~o]M Again one observes the occurrence of a second type of 

connection form ( ~ ) which originates from the interplay between bundles of 

different order and which gives the prolongation criterion for ~ 
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The analogy between the present concept and the affine version of PGT is 

stronger than we could indicate here. E.g., the idea of a 'shifting field' which 

connects the notions of 'diffeomorphism covariance' and 'translational gauge in- 

variance' in PGT /9/ can be given a precise meaning in conformal theory, too. 

This again reflects our interpretation that, although the affine formalism on 

A~3M only seems to be an extension of an equivalent L~M formalism, it may, 

however, give relevant insights into the geometry of conformal gauge theories 

(concerning YM analogy, incorporation of Cartan connections, the role of tetrad 

fields, generalization of equivalence principle, etc.). 
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I. Introduction 

Conformal techniques have played a role in the investigation of the 

structure and existence of solutions of Einstein's field equations in 

two quite different ways. They seem to have made their first appearance 

in this context in the analysis of the constraint equations which are 

implied by Einstein's equations on a space-like hypersurface. The method 

of solving the constrained equations by conformal methods has been ex- 

tensively analysed and a discussion of its significance and a list of 

the relevant literature can be found in [3]. In this article I shall 

rather be concerned with the possibility to obtain information on the 

existence of global solutions of Einstein's field equations satisfying 

certain asymptotic conditions by exploiting the conformal structure of 

the full field equations. 

In the early sixties various authors, among them notably Sachs [16, 17] 

and Bondi et al [2] were concerned with the question of what the beha- 

viour of gravitational fields far away from their generating sources 

(which were thought of being confined to a spatially compact region) 

should be. In particular the problem whether and how notions like "in- 

coming and outgoing radiation" etc. could be given a precise meaning 

for such space-times played a guiding role. On the basis of an analysis 

of a certain type of formal expansion of solutions of Einstein's field 

equations, into which entered a lot of physical intuition and knowledge 

about certain exact solutions and the behaviour of the solutions of the 

linearized equations, these authors were able to present a rather co- 

herent picture of the situation they wanted to model. Shortly after it 

was shown by Penrose [14] that the complete picture could be derived in 

a very elegant way for space-times satisfying a few conditions on their 

global conformal structure. 
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In his characterization of a space-time (M,g), with "physical metric" 

on the "physical manifold" M, as a space-time representing the field 

of a bounded gravitating source, it is required that the field be such 

that 

- there exists a 3-dimensional manifold~, which can be attached to 

in such a way that the manifold structure on M extends smoothly to 

M = M U~ to make the latter a smooth manifold with boundary~ , 

- there exists a smooth function ~ on M with ~ > 0 on M and ~ s 0 but 

d~ ~ 0 on~ such that the "non-physical metric" 

extends to a smooth Lorentz metric on M. 

A few further conditions have to be added here to obtain a satisfactory 

picture. For this and a detailed discussion of the meaning of the re- 

quirements above the reader may consult the literature [15, 11, 12]. 

Space-times with the properties indicated above are called "asymptoti- 

cally simple". It turns out that the null geodesics for ~, which as point 

sets coincide with the null geodesics of g on M, that approach a point 

on the surface~ do this only by attaining infinite value of their af- 

fine parameter. Thus~ represents a piece of infinity, called conformal 

infinity. Further information on the causal structure of conformal in- 

finity can only be obtained by taking into account the field equations 

satisfied by the metric g. It is of importance here that the require- 

ment, that the physical field allows a conformal extension as indicated 

above, incorporates a "fall-off condition" for the physical field g. 

The structures like ~ andS, associated with the conformal structure of 

the field, do not belong to general relativity from the beginning. 

Einstein's field equations (with cosmological constant A) 

~[~] = A ~~g~ (I) 

are designed to determine an isometry class of solutions from given 

initial data and are therefore not conformally invariant. Formally 

this is seen by replacing ~ in (I) by Q-2g and expressing everything 

in terms of quantities derived from g and ~. Then (I) is represented 

by the equivalent "conformal field equations" 

R m[g] = n-2g~(A+3V ~VO~) - ~-I(2v V Q+g~vVaVOS) (2) 

which of course loose their meaning where ~ vanishes. Thus it is far 

from obvious that the fall-off conditions given above should be in 



154 

harmony with the propagative properties of Einstein's field equations. 

On the other hand the conformal description of the asymptotic behaviour 

of the field was satisfied by various exact solutions of the field 

equations, it fits surprisingly smooth together with the type of for- 

mal expansion studied by Bondi, Sachs and others, and finally it 

allows to define physical notions like "radiation field" etc. in such 

an elegant and natural way that it is hard to believe that there should 

be something wrong with it. 

2. The Regular Conformal Field Equations 

To understand whether the characterization of the asymptotic behaviour 

of the fields in terms of their global conformal structure is adequate 

for solutions of Einstein's equations and why this should be so, I in- 

vestigated the "conformal structure" of Einstein's equations, i.e. the 

structure of the equations (2), where the conformal factor is arbitrary 

and even allowed to vanish at some points. At the center of the analysis 

was the problem to specify, if possible, those properties of the conform- 

al field equations which will enable one to say something about the set 

of solutions which possess the described asymptotic behaviour. The most 

obvious problem with equation (2) is the fact that the right hand terms 

become singular where R goes to zero. Multiplying by Q2 does not help 

since the principle part of the differential operator which acts on the 

metric g will then vanish where R vanishes. This difficulty is resolved 

by the following result [4]: 

Regularity Theorem I: The conformal field equations (2) for the non- 

physical metric g and the conformal factor ~ can be represented by a 

system of first order quasilinear partial differential equations, the 

"regular conformal field equations", which is regular for all values of 

the conformal factor R. 

The regular conformal field equations constitute a set of field equa- 

tions for the components of an orthonormal frame, for the connection 

I V ~ ~, for the traceless part of the coefficients, for ~, dR, s = ~ ? 

Ricci-tensor and for the rescaled Weyl tensor. This set of equations, 

which comprises the trace-free part of (2), now read as an equation for 

dR, can be derived from (2). That a regular system is obtained depends 

essentially on two facts. The vacuum Bianchi identities, read as an 

equation for the Weyl tensor, transform under conformal rescalings 

into a regular equation for the rescaled Weyl tensor. Moreover, from 

equation (2) can be derived an integrability condition which may be 

read as a field equation for s. By incorporating these equations into 
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the regular system one is able to show: 

Any solution of Einstein's field equations (1) supplies a solution of 

the regular conformal field equations. Conversely, any solution of the 

regular conformal field equations on a manifold M provides on the open 

submanifold ~ of M where ~ is positive a solution of Einstein's field 

equations. The cosmological constant is obtained as a constant of inte- 

gration, which may be fixed on a suitable initial surface. 

Thus the regular conformal field equations generalize Einstein's equa- 

tions slightly since they are defined and regular even where the con- 

formal factor ~ vanishes. 

Since the regular system is built up by using various integrability 

conditions, it is highly overdetermined and does at first sight resemble 

none of the systems to which the theory of partial differential equa- 

tions would apply. To derive statements about the set of solutions of 

the regular system the following r~sult is important [4, 6]. 

Reduction Theorem 2: Initial value problems for the regular conformal 

field equations can be reduced to initial value problems for symmetric 

hyperbolic systems of "reduced conformal field equations" 

In [6] it has been shown that in the regular conformal field equations 

can be singled out certain functions called "gauge source functions", 

which on the one hand can be given arbitrary functional form by a 

suitable choice of conformal factor, coordinate system and frame field, 

and which on the other hand determine the choice of gauge uniquely, 

if the gauge has been fixed on a suitable initial surface. If the gauge 

source functions are isolated in the field equations and considered as 

given, one finds that the regular conformal field equations imply a 

symmetric hyperbolic system of propagation equations for all unknowns 

occurring in the regular conformal field equations. It can be shown 

that a solution of these "reduced equations" for data which solve the 

constraint equations on a suitable initial surface provides in fact a 

solution of the complete system of regular conformal field equations. 

Since symmetric hyperbolic systems [10] are well understood and very 

general existence theorems for solutions of such systems are available 

[13], the regularity theorem and the reduction theorem may be used as 

starting point for deriving various existence theorems for asymptotic- 

ally simple solutions of Einstein's field equations. The fact that the 

choice of gauge can be controlled in the reduced equations by the free- 

dom in choosing the gauge source functions allow to adopt the form of 

the equations suitably to various interesting situations [7, 9]. 
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Finally it may be pointed out that the results indicated above extend 

to the case of the coupled Yang-Mills-Einstein equations. 

3. Asymptotically Simple Solutions of Einstein's Equations. 

If one wants to use the results discussed above to derive existence 

theorems about asymptotically simple solutions of Einstein's equations, 

the kind of PDE problem which one has to deal with will depend on the 

sign of the cosmological constant, since this determines the causal 

structure of conformal infinity [14]. 

The case of negative cosmological constant, in which conformal infinity 

represents a timelike hypersurface has not been worked out yet. However, 

it may be pointed out here that the regular conformal field equations 

may be used here to prove the existence of asymptotically flat solu- 

tions by investigating a mixed problem where data are given on a space- 

like hypersurface, which is thought as being a hypersurface in the 

physical space-time, and on a timelike surface which represents con- 

formal infinity. 

In the case of positive cosmological constant conformal infinity is 

space-like. The simply connected, geodesically complete, conformally 

flat standard example for this situation is provided by de-Sitter 

space-time, where conformal infinity consists of two Components, which 

represent past respectively future null and timelike infinity. There 

are two results which suggest that being asymptotically simple or weak- 

ly asymptotically simple [15] (i.e. possessing "patches of conformal 

infinity" in the past and/or in the future) is a rather general prope r - 

ty of solutions of Einstein's equations with positive cosmological 

constant [8, 9]. 

Theorem 3: Let S be an orientable compact 3-dimensional manifold with 

Riemannian metric h and let d be a symmetric, covariant tensor field of 

valence two with vanishing divergence on (S,h). If these structures 

are sufficiently smooth then there exists a unique past asymptotically 

simple solution of Einstein's field equations (1) with A > O, a given 

constant, which is diffeomorphic to S 8 x~ and such that past conformal 

infinity is diffeomorphic to S, the metric implied on past conformal 

infinity is conformal to h and the field d is up to a certain factor 

identified with a certain component of the rescaled Weyl tensor on past 

conformal infinity. 

This result assures the existence of a huge class of semi-global solu- 
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tions of Einstein's equations ~ith the desired behaviour at past null 

and timelike infinity. In fact the freedom to prescribe data on past 

conformal infinity is essentially the same as in the standard Cauchy 

problem for Einstein's field equations. However, the constraint equa- 

tions implied by the regular conformal field equations on past con- 

formal infinity are rather simple and it is easy to provide initial 

data sets for the reduced field equations. 

If the initial data set S, h, d and A is given in such a generality 

as above, it will of course be difficult to gain information on the 

late time behavieur of the solutions. Therefore one may consider data 

which are "near" to the corresponding data for de-Sitter space-time. 

In that case S is diffeomorphic to S 3, the standard 2-sphere, the 

tensorfield d = d o vanishes identically on S and, after a suitable 

choice of the conformal factor, the metric h = h 0 coincides with the 

standard metric on the unit 3-sphere, and A = A 0 = 3 

Theorem 4: There exists a neighbourhood of the de-Sitter data ho, d O 

on S ~ such that for data h, d in this neighbourhood and for A suffi- 

ciently near to A 0 the solution of Einstein's field equations, whose 

existence has been asserted in theorem 3, is asymptotically simple in 

the past as well as in the future. 

Of course one has to (and can) make precise what the meaning of "near" 

and "neighbourhood" should be. Beside the fact that in the theorem is 

shown the existence of global solutions of Einstein's equations, two 

aspects of th~ result are of interest here. On the one hand it shows 

that the propagative properties of Einstein's equations are such that 

even fairly general data evolve into a space-time which satisfies the 

conditions of asymptotic simplicity. On the other hand it demonstrates 

that the conformal properties of the field equations which are indica- 

ted in theorems I and 2 may be used to prove semiglobal and in fact 

global existence theorems. 

The most interesting case is of course that of Einstein's field equa- 

tions with vanfshing cosmological constant, where conformal infinity 

is lightlike. The standard example is provided by Minkowski space- 

time, where conformal infinity consists of two components, past and 

future null infinity, which may be thought of as set of past respective- 

ly future endpoints of null geodesics. The conformal extension can be 

constructed in this particular case in such a way that it contains 

three additional points i-, i + o , i , representing in this order past 

and future tim~like and spatial infinity. Past (future) null infinity 
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is then the future (past) null cone of i-(i +) and both hypersurfaces 

meet at i ° to form the null cone at i °. In the conformal extension of 

more general space-times, in particular if sources are present, these 

additional points are not necessarily obtained. 

Various initial value problems for the regular conformal field equa- 

tions may be investigated in the ease of vanishing cosmological constant. 

The "pure radiationproblem". Here certain "free data" are prescribed 

on a cone whose vertex is thought of representing past t/melike infini- 

ty while the cone itself is thought of representing past null infinity 

of the space-time to be determined from the data. Furthermore a certain 

completeness condition on the generators of the cone is required. A so- 

lution of this problem will represent pure gravitational radiation which 

comes in from infinity and interacts non-linearly with itself [7]. 

Theorem 5: The "pure radiation problem" can be reduced to a character- 

istic initial value problem for a symmetric hyperbolic system. A solu- 

tion of the pure radiation problem is determined uniquely by the free 

initial data (the "radiation field"). 

Though this result gives evidence that the pure radiation problem is 

natural for Einstein's field equations, the technical performance of 

the existence proof is considerably aggravated by the non-smoothness 

of the initial surface at the vertex. 

The "hyperboloidal initial value problem". Here initial data are pres- 

cribed on a spacelike hypersurface with compact boundary, where the 

latter is thought of as the intersection of this hypersurface with 

(past or future) null infinity. Initial data pertaining to this situ- 

ation will he called "hyperboloidal initial data". The name comes from 

the fact that surfaces of this type are provided by the spacelike unit 

hyperbolic in Minkowski space-time. In this particular case the corre- 

sponding data for the regular conformal field equations will be called 

"Minkowskian hyperboloidal initial data". One has the following result 

[5,9]. 

Theorem 6: For sufficiently smooth hyperboloidal initial data there 

exists a (up to questions of extensibility) unique solution of the 

regular conformal field equations. It provides a solution of Einstein's 

field equations Ric(~) = 0 which possesses a smooth "p~ece of conformal 

infinity". For hyperboloidal initial data which are sufficiently near 

to the Minkowskia~ hyperboloidal initial data the corresponding solu- 

tion of the regular conformal vacuum field equations has a (past resp. 
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future) Cauchy horizon whose generators converge to a point (i + resp. 

i-) which represents (past resp. future) timelike infinity for the phy- 

sical space-time, while the Cauchy horizon represents (past resp. future') 

null infinity. 

While in the first part of the theorem no assumptions are made on the 

largeness of the initial data and consequently no information is given 

about the behaviour of the solutions far away from the initial surface, 

in the second part it is seen that in situations which do not deviate 

too much from the fiat standard situation, the structure of (past resp. 

future) null infinity resembles that of Minkowski space-time. 

The "standard Cauchy problem". This corresponds to the "usual" Cauchy 

problem for Einstein's equations Ric(g) = 0, where data are given on a 

spacelike hypersurface which is thought of as a Cauchy surface for the 

solution space-time. 

It is of course possible to reproduce the "usual" existence theorem by 

using the regular conformal field equations. The really interesting 

problem, however, is, whether it is possible to specify a sufficiently 

general class of initial data, for which it can be shown that the solu- 

tion space-time will possess a smooth past as weil as future null infi- 

nity. The analysis is particularly complicated by the fact that in the 

interesting cases spatial infinity cannot be represented by a regular 

point in the conformal extension [I]. Whatever the final answer to this 

problem will be, i think the results obtained so far show clearly that 

the analysis of the conformal structure of the field equations is of 

considerable use in obtaining information about the global behaviour of 

their solutions. 

The diligent reader will have noticed that the space restrictions led 

in this article to a style of presentation which saved him from all the 

gory details. For these he is asked to consult the quoted literature. 
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S I. INTRODUCTION~ 

,~ According to the principle of Galileian relativity, the "laws of physics" are "invaMant" 

under the 6al i le l  group 

( 1.1 ) Gio := (50(3) x F~) x (~3 x ~3). 

In special relativity, one slmply replaces the Galilel group by the Polncar6 group in the 

fundamental statements. Now some relativistic theorles are actually characterized by a 

larger symmetry, namely the conformal invarlance under 0(4,2) - or SU(2,2). They are 

in fact associated to masslessness (Maxwell and Yang-Hllls fields, classical massless 

spinnlng particles [43] or twistors). It Is therefore tempting to address the questlon of a 

nonrelatlvlstlc version of conformal symmetry. 

In 1972, Hagen [20] and Nlederer [36] Independently showed that the maximal 

kinematical lnvarlance group of the free SchrOdinger equation is actually larger than the 

Galllel group. That group has since been called the 5chr6dlnger group 

(1.2) Schl2 := (50(3) x Sl(2,B))x(B3 x F~3). 

See e.g. [2,3,6,7,9- 12,16,21,23,37-40] (non exhaustive bibliography). It has soon been 

realized that 5chi2 has no direct relationship with 0(4,2) [2,12,21,38]. The striking 

feature is that the SchrOdlnger group is indeed specific of massive systems (e.g, the 

Schr6dlnger field, classical (spinning) particles, etc...) rather than massless ones (e.g. 

(') Laboratolre propre du CNRS 
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the mass zero Galllei coadjoint orbits interpreted as symplectic models for classical 

"photons" [43,16]). On the other hand, the plain 15-dlmenslonal contraction 

Ilmc-,oo0(4,2) seems to have nothing to do wlth symmetries of classical partlcle/fleld 

theory (see however [2] for a contraction procedure that involves a mass rescallng). 

• Let us briefly sketch the historical Introductlon [36] of the maximal kinematical 

invariance group of the free SchrSdinger equation 

(1.3) SU2 = O; $ := (2m)- IA + 1 8tl 

Look for those local dlffeomorphisms of spacetime R 4, a : x ,-- x" such that the 

transformed wave function ~" 

(1.4) ~'(x °) := Fa(X) ~(x) 

(where F a is some complex-valued function needed in the context of unitary irreducible 

projective representations) Is again a solution of (1.3). InflniteslmaIly, that amounts to 

finding the differential operators 

(I.5) X := AK(x) aK ÷ B(x) 8t + C(x); x = (xK,t); K = 1,2,3, 

that satisfy 

(1.6) [ $ , X ] = 1 , 1 $  

for some (real) function ,1 depending on X. The general solution of (1.5,6) is given by 

(I.7) AK = ~KLxL + pKt+ IPK + octxK+ XxK 

(1.8) B = o(t2+2Xt*~; 

(1.9) C = im(-PK xK - (x/2 XK xK + 8) + 3/2(~xt. X) 

withca E so(3) { Ca(KL)= 0 }, p, l~ E R3, o(, X, e E R and ,I = 8tB. Galilei transformations 

are generated by (ca, p, t, ~;) and X (resp. (x) generate dilatations (resp. inversions or 

expansions). They altogether span the Lie algebra sch12, while 8 gives rise to a central 

extension m_schi3 of schi2. In contradistiction with the relativistic conformal group, 

time is dilated twice as much as space [20] I Nevertheless, the occurence of inversions 

suggests a plausible analogy with conformal transformations of some "metric" space 

whose relationship with spacetime still remains to be clarified. 

• The purpose of this article Is to decipher in elementary terms the geometry underlying 

Schi2 (S3) and to discuss some of its aspects in symplectic mechanics (S4). To that end, 
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we introduce in S 5 a certain 5_dimensional extension of spacetime called a Bargmann 
structure (much in the spirit of Kaluza-Kleln theory) that accomodates U(1)-central 

extenslons of Schi2 arising in prequantlzed classical particle mechanics [43,i6] and 

nonrelativistlc quantum mechanics iS 6). 

Let us flnally mention without further details miscellaneous applications of 

nonrelativistic conformal symmetries. 

• By using the techniques developed in S 5,6 it has been shown in [8] that the harmonic 

oscillator is "Bargmann-conformally related" to the free particle. The Feynman- 

$ouriau kernel [44] for the harmonic oscillator has been recovered explicitely together 

with the correct Maslov index (see [37,26,4i ] for an alternative approach). These results 

extend to the time-dependent case (5.24), e.g. Newtonlan cosmology [39]. 
• The "virial group" of canonical similitudes (dilatations) of the presymplectic 

evolution space of a test particle in a Coulomb potential shows up as a subgroup of Chr13 

defined in (3.15). See [ i 6]. 

• In integrating the Schr~dinger equation for a charge-DiraLmagnetic_monopole 
system, dacklw [25] emphasized the crucial $0(3)xS0(2,1)1' symmetry of the problem 

($4). See also [24] for an account on geometric quantlzatlorl. 

• The conformal invarlance of nonrelativlstic spin wave equations has been first 

elucidated In [20]. We revisit in S6the spin._l/2 Levy-Leblond equation [32] in the 

light of our 5-dimensional setting [29,30]. 

• New sol|ton solutions of the nonlinear Schr{)dtnger equation have been discovered [ 11 ] 

with the help of conformal symmetry properties. 

• Orle of the major issues is the rising of a new geometry, the chronoprojective 
geometry [6,7] of classical spacetlme viewed as a reduction of the 0(5,2) conformal 

geometry [39]. 

Acknowledaements. We thank M. Perrin and d. Elhadad for a careful reading of the 

manuscript. 
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S2. 6ALILEI AND NEWTON-CARTAN SPACETII'IES. 

• Galllel sDacetime. The (proper) Galllel group Glo ls defined as the multipllcatlvegroup 

of all 5x  5 matrices 

(2.1) g = I t (R ¢ S0(3), v, r E Ft3, t E i~). 

0 I 

The homogeneous Galilei subgroup H 6 := S0(3) x FI3 is spanned by 

(2,2) e = R v 

0 I 
Spacetime Glo/H 6 -~ ~4 is therefore parametrlzed by (r,t) and Olo--~R4 ls a principal 

H6_fibre bundle, the bundle of Galilel frames of R 4 [28], Letting e =: (e 1 e 2 e 3 e4) , the 

H6_invariant function of Glo 

(2.3) }~ := eA ® eB 8 AB (A, B = 1,2,3) 

descends to F~4 as a symmetric 2-contravariant tensor with signature 

(2,4) sign(l)) = (, ÷ + 0). 

It endows each fibre $14 t := ~3 x {t} (space at time t) with a canonical Euclidian metric, 

The Maurer-Cartan 1 -form ® := g- ldg of Glo (see (2.1 )) 

0 

where 

(2.6) ~o= oR-IdR ~-Idv) ; e=( R-I(dr-vdt)/dt j 

is a privileged affine Cartan connection on our frame-bundle. Since we are in the 

reductive case, w is a (flat) principal connection on GIo--~B 4. If V denotes the 

associated covariant derivative, we have 

(2.7) V ]) = O; Torsion V = O, 
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From (2.6), it is clear that the time-component 84 of the soldering l_form 8 descends to 

F~4 as the Galilei clock 

(2.8) T = dr, 

(2.9) ker lJ = FI ~, 

(2.i0) V T = O. 

Note that 81 ̂ 82^83^84 defines a canonical volume element on spacetlme. We call 

(F~4, ~,~,~), briefly (~3;I,~) the flat affine Galllel spacetlme. 

• Newton-Caftan sDacetime. [ 13,46,47,22,28,15,19,34,35] We extend these definitions to 

the curved case to describe Newtonlan gravitation In a purely covariant manner. 

Spacetime M is now assumed to be a smooth connected 4L_dimenslonal manifold endowed 

with a (proper) 6alilei structure (i~, T) 

(2.11 ) ~ = y ~P 8oc® 8p, ~[o(p ] = O, 

(2.12) T = T ~ dx ~, dT = O, ker ~ = ~ T, 

and a compatible symmetric linear connection V (2.7,10), a Gal i le l  connection. The 

clock 1: (locally) defines the absolute t ime-ax is  T:=M/ker(~). Contrary to general 

relativity, Galilei connections are not uniquely determined by the given Galilei structure. 

The degeneracy of the "metric" (y,~) forces us to treat the gravitational field V rather 

independently (see below). Part of the ambiguity in Galilei connections is gauged out via 

the nontrivial constraint (curlfreeness of the Newtonian field) 

(2.13) Ro(P~ 8 = R~8o~P ( Ro(P~ 8 := Ro((~ 8 ~P ). 

The number of independent components of the curvature R is therefore the same as in 

general relativity [28]. We call such connections Newtonlan connections and 

(M, ~, ~. V) a Newton-Caftan spacetlme. 

Let us finally recall the covariant expression of Newton (-Caftan) field equations 

(2.14) Ric = (4nGp + A) ~ @ "~ 

where Ric denotes the Ricci tensor and G Newton's constant. The only sources of 

gravitation are mass density p and possibly the cosmological constant A. 
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$3. 6ALILEI AND SCHRODINGER SPACETIHE AUTOHORPHISHS. 

• In characterizing the automorphisms of a Newton-Cartan structure (M,I~,%~) we 

would start wlth the nonrelativistic "isometries" 

(3.1) Cor(M,~,~):= { a E Dlff(M); a*~=~, a=T=~ }. 

Unfortunately, the "Corlolls" transformations form an Infinite dimensional diffeological 

group [45]. If we then define [46] 

(3.2) GaI(M, ~,~,V) := Cor(M, ~,~3 N Aff(M,V), 

where Aft(M, V) Is tl~e group of afflne diffeomorphlsms of (M,~), then 

(3.3) Gal(Fg3; I,~) 0 ~- Glo. 

The neutral component of the group of automorphisms(*) of the flat Galllel structure is 

thus isomorphic to the 6alilei group (2. I ), 

• If interested In preserving only the direction of the Galilel structure, we may define 

[21J the (pseudo)group of local "Leibnitz" dif feomorphisms 

(3.4) Leib(M, t,T):= {a E DIffloc(M); a* i~= ~-2 t, ~ E C°°(M,FP)} 

that automatlcally preserve the direction of T : Ca" T),, T = 0 - see (2.12). We again end up 

with an infinlte-dlmensional object of little physical interest. Since we wish to extend 

Newtonian affinities, the simplest idea that comes to mind is to look for oroiectlve 

Leibnitz transformations (that preserve the geodetic structure i.e. the geometry of free 

fall of (M,~7)). We thus define *ChronoproJectIve" transformations of a Newton- 

Cartan structure as 

(3.5) Chr(M, I~,T,V):= Leib(M, I~,T) I'l Proj(M,~). 

Infinitesimally(°') 

(3.6) chr(M,l~,T,~) := { X E F(TM); LXI~ = ,It; Lxr = I®~÷ ~®I; 

;l ~ COO(M,I~); ~ ~ r(T'M) }. 

It is then easy to prove [I 6] that 

(3.7) L X T = lJ 

(*) i.e. the orientation preserving Galilei automorphisms. 

(**) F(TM) - vector fields on M. 
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(3.8) ,I + p = const. 

(3.9) 2 ~ = dp = p' T (p' := dpldt). 

In the case of (I~3; I,V) we seek those vector fields X = XO(8o((o(,p, i~= I,...,4) such that 

(3. I0) L x I~P = -2 tp(c(8pXl~) = ,I i~xl 3 (to(13 = 8o( A BI~ B BAB; A, B = 1,2,3) 

(3. I I) LX ~c~ = T~ a~X~ = p ~c~ (q:c( = ~ 4 )  

(3.12) LX ro(/~' = ao(apx~ = p' 8~'(o(~p). 

The general solutlon of C3. I O- 12) is given by 

(3.13) xk=(~kBxB+pkt + #k+(xtxk+xxk 

(3.14) X 4 =cxt2+~it+~ 

with (~ E so(3); p, # E ~3; o(, X, 11E B (compare (1.7,8)); p = 2oct+ ~I and ,l+p = ~I-2X. Thus 

(3.15) chri3 := chr(~3; I,V) ~_ (so(3) x gl(2,~)) x (~3 x ~3) 

contains schi2 as a subalgebra (see (1.2)), also schi2 = [chr13,chr~3]. Since chri3 acts 

projectlvely on the real llne (time axis), we have called it the chronoprojective Lie 

algebra. We might as well have defined the special chronoprojettlve (5chrOdinger) 

Lie algebra (~+p=O in (3,8)) as 

(3.16) sch(M,~,~,?):={XEr(TM); LX~ =-p~;Lx~ = p~; 

LXF = I ~ ~ + ~ ~ !; p E C~(M,FI); ~¢r(T'M) }. 

That characterization of Newton-Cartan "conformar' automorphisms has however a 

cryptic geometrical status we wil l  elucidate in S 5. 

• Let us discuss some alobal aspects of the Schr6dtnger group SChl2 that may be 

consistently defined (up to a covering) as the subgroup of GI(5,R) [36] 

(3.17) Schl 2:= { d 

f 

acting projectively on FI4 x { I } (hint: (3.5)) 

(3.18) t ~ |dt+e --- 
i 

I \ft+ g 

; A~SO(3); b,c ~IR3, d,e,f,gEFI; dg-ef= I} 

I (At + bt + c)l(ft + 

1 (idt + e)l(ft + g) g)) 
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Let us then find out a Newton-Cartan manifold (M,I~,T,V) that would be a homogeneous 

space of Schi2 to be considered as the typical  5chrGdlnger spacetlme (locally B3; 1). 

If 5ch8 denotes the stabilizer of the origin In IR4 (c = O, e= 0 in (3.17,18)), then 

(3.19) M:=Schi2/Sche=(FI3xS1)/7/2,  

ls a rank-3 vector bundle over l~ I(B) [ 16]. Only time is comDactified. 

.-f-----~-~3 --------'-'--,. 
7 

(©-~,,,,, ,, T)IZ 2 

1[ 

(fig I) (~.. -,-- .......... ) ~ i (FI) 

t 

The Newton-Caftan structure on M is canonically defined by the prlncipal H'6-fibre 

bundle $chio~M=$chlo/H'6 (*). Also M~- P4(FI)\P2(FI) where P2(I~) ~-((F~3\{O})x{O})/Ft *. 

Because H' 6 and FI4 are in a reductive position In SChlo , the Maurer-Cartan 1-form of 

Schlo 

J 
(3.20) 0 0 84 

0 -84 0 

serves to define the 5chrI~dinoer clock 

(3.21) T =84, 

and the SchrGdinaer connection 

(3.22) co = ~ ~4 

0 0 

where ~ = A- IdA; ~)4 = A- l(db + cT). The "space" metric is 

(') Schio:=(SO(3)xSO(2))_x (OR3xFI3), H' 6 := SChio CI Sch 8 -~ (SO(3)xZ2) x_Ft3). 
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(3.23) y = 8 AB~/Oc A®O/Oc B. 

SchrOdinger spacetime (3.19) is nonflat ! Its curvature 2- form is given by 

(3.24) gA B = O ;  oA 4 = eA^e  4 (A,B=I,2,3), 

whence 

(3.25) R i c = 3 T ® ' [  

and (M, y,'[,V) ls a topologically nontrlvlal solution of Newton's fleld equations (2,14) 

corresponding to a vacuum wlth unit reduced cosmological constant ( A/3  = 1 ). 

• It ls shown In [7,8,16] that the nonrelativistlc chronoproJect ive Weyl curvature is 

(3.26) Cocl~t ,1 := Roq~t '1 - 2/3 8~[oc RI~]I~ 

together with the consistency relation associated with the Ricci tensor 

(3.27) Ro(l~ = f T~XTI~ (f ¢ C°°(M, ~)). 

We claim that Newton's field equations (2.14) can thus be Interpreted as a necessary 

condition for a 5chr6dinger (chronoprojective) structure to exist on a Newton-Cartan 

spacetime, No general relat ivist ic analogue ! In addition to Schr6dinger spacetime (3.19), 

other examples of ch ronopro jec t l ve ly  f l a t  manifolds (C .  O) are discussed in [7,8,16] 

(e.g, the homogeneous and isotropic Newtonian cosmological  spacetime). 

S4. GROUP COHOHOLOGY AND SCHRODINGER INVARIANT DYNAMICAL SYSTEMS. 

• Let (M,q) be a (pre)symplectic manifold with a canonical action of some Lie group G 

(i.e, a*q = q, all a ~ G). If (g,[, ]) is the Lie algebra of G and if Z denotes the standard 

vector field of M associated with Z ~ g, then locally 

(4. I ) q( Z ) = - d(p.Z) for some p E Coo(M,g'). 

In the cIlobal case p is called the momentum mapping [43] of (M,q,G) - strong 

(pre)symplectic action - and there exits a function 0: G -~ g* 

(4,2) e(a) := p(a(x)) - ad*(a).p(x) (aEG; xEM) 

where ad* denotes the coadjoint representation of G on g', We then have 

(4,3) 8e(a,a') := ad'(a).e(a') + e(a) - e(aa') = 0 (all a,a' E G), 

(4.4) q(Z,E) = p.[Z,Z'] + f(Z)(Z') (all Z,Z' E g), 

(4,5) f := D(e)(e) ~ A2g', 



171 

Now 6 gives rise to the syml)lectlc cohomology denoted by H l(G,g*) where l-cocycles 

Z l({3,g,) are defined by (4.3,5) and coboundaries by 

(4.6) [8 ~ BI(G,g ") ] ~ [ e(a) = 8p(a):= ad*(a).p - IJ; IJ E g* ]. 

• GaIIIel symplectlc cohomology. Denote any vector in glo by 

j (o) p t 

(4.7) Z =~0 0 s (o ,  p, ~ ~ 0~3, ~ ~ 0~) 

\o 0 0 

where j (o) (v) := ~a xv. The pairing between g~o and g*lo ~ P :={I, q, p, E} is defined by 

(4.8) p.Z := < I, (a > - < q, I~ > + < p, t > - E~;. 

The symplecUc cohomology of the Galilel group Gio is l-dimensional : every non-trivial 

cocycle e is of the form (see (2.1)) 

(4.9) 8=m81; 81(a)={rxv, r-vt, v, v212 } (a(~Gio, m(~), 

the coefficient m which labels a class in Hl(Gio,g*io ) will be later on interpreted as the 

mass. The derivative (4.5) of 8 at 1 is 

(4.10) f(Z,Z') = m (< p, r' > -  < P', t >). 

• Schr6dinger  symp lec t i c  cohomology. The Lie algebra schl2 (3.17) is spanned by the 

5 x 5 matrices 

I 
j(o) p t 

(4.11) Z = 0 X s ((4, p , t ¢ ~ 3 ,  o( ,X,s¢~).  

0 -~  -X 

The pairing between schi2 and sch'i2 ~ lJ := {I, q, p, E, K, D} is defined by 

(4.i2) p.Z := < I, o > - < q, I} > + < p, I~>- E ~;- Ko~+ DX. 

with the physical interpretation : I := angular momentum, q := centre of mass, p := linear 

momentum, E:= energy, K:= inversion momentum, D:= dilatation momentum. A tedious 

calculation [i6] then shows that 

(4.13) dim(Hl(Schi2 ,sch*i2)) = I 

just as in the Galilei case and 

(4.14) 

(4. i 5) 

e E Hl(Schi2 , sch* i2 )  ~=> [e = m 81 ; m ~ R], 

0 l(a) = {cxb, cd-be, bg-cf,  I lbg-cfl l2/2, Ucd-bell2/2, <bg-cf,cd-be> } 
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(all a¢ Sch12). Note that the derivative f of e at I is again given by (4. i 0, I I ). 

• The bary. centric decomposition [43]. 

Let (H,o) be a connected symplectlc manlfold with a strong symplectic action of some 

Lie group 13. Suppose that G' be a closed abellan invariant subgroup of 6 with Lie algebra 

g' c g. If e deflnes a nontrivial class in H1(G,g*), the induced 2-form a' := fig' depends on 

e only and G acts symplectically on (g',a'). If lJ' is the induced momentum mapping of G', 

then IJ' Is a submersion H - ,  g'" If ker(o') = {0} - I.e. If (g',o') is a symplectic vector space 

as wi l l  be assumed from now on. Then (M,(n ls symplectomorphlc to the direct 

symplec t lc  product  (g',(~') x (M",(1") where L: M" := {x~rl;IJ'(X)=O} -+ I"1 IS an 

embedding and o":= C'O. If e':= elg', then G":= (e')-'l({o}) acts canonically on (M",(~"). 

In the Galilel case, g'=Fl3xFl3 (with the symplectlc 2-form o' given" by (4.10,7)) 

represents the space of centre of mass mot ions of a dynamical system of total mass 

m >0; H" is then interpreted as the space of orbital motions with dynamical group 

G" = 50(3) x Ft. Elementarv massive aalllelan dvnamlcal svstems are associated wlth 

coadJolnt orbits of G", namely (S2,ssurf)x{Eo} where s ~ ~+ is the spin and E o ~ ~ the 

Internal energy. 

In the Schr6dlnger case, the situation is almost the same as before. If the total mass m 

of a Sch12-invarlant dynamical system (M,o) is nonzero, it defines a class in 

H l(Schi2,sch'i2 ) and M splits up into the dlrect symplectic product of (g'= FI 6,o') - 

centre of mass motions - where o' is given by (4. I O, I I ) and some symplectlc manifold 

(M",o") representlng orbltal motions. Again, masslve elementarv SchrOdinaer dvnamlcal 

svstems are characterized by the fact that M" be a coadjoint orblt of the semi-simple 

Lie group G"=SO(3)xSL(2,FI), symplectomorphic to (S2,ssurf)x(H2,csurf) where the 

Casimir invariant s is st i l l  interpreted as the spin and H2 is a sheet of a certain 

hyperbo]old in B2,1. Unfortunately enough, neither the Caslmir number c. nor the internal 

Dhase sDace H2 seem to retain a clearcut ohvsical interDretation. This point has already 

been emphasized by Perroud [40] In the context of representation theory. If we Insist on 

the additional 5chr6dlnger Invarlance of Oalllel massive elementary dynamical 

systems, then necessarily 

(4.16) E o = O, 
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corresponding to the tr iv ial  SL(2,~) orbit c = O. No Internal energy ! The overall 

additive constant in the definit ion of galileian energy is ki l led by assuming Schr6dinger 

invariance. 

• An example : the Dirac charge-monoDole system. 

One can describe the classical motions of a charge-monopole system {q,q*} interacting 

via the magnetic f ield B := qq* r r -3  (r:= r 1 - r 2, r:= Ilrll) by the presymplectic 2-form of 

[~6 x {(~3 \{0}) x ~3}]x 

(4.17) e := ~bar + Oorb 

(4.18) (~bar := M < dV^(dR - V dt)> 

(4.19) Oor b := m <dv^(dr - v dt)> + qq* surf 

wi th It := (mlr l+m2r2) /M; I"1 := m 1 ,m 2 ; m := mlm 2 /M;  "surf" denotes the canonical 

surface element of the unit sphere 52 c ~3, i.e. 

(4.20) sur f=  1 /2 r -3  < r ,  d r x  dr >. 

The fol iat ion ker(o)then yields the famil iar equations of motion. It has been shown [16] 

that the inf initesimal action of SChl2 ((3,13,14) with 1l = 2 X) can be l i f ted to the  

evolution space ~3 x ~3 x ~ ~ (!t, V, t) according to 

(4.21) Z_ := (~AB RB+ pAt + I~A+ o(tRA+ xRA) 8/SRA + (o(t2+ 2X t + c)~)/St 

+ (~A B vB + pA+ ~(RA _ vat) - X vA) OlSVA 

in such a way that 

(4.22) L Z Oba r = O, 

i.e. that Z be an infinitesimal (pre)symplectomorphlsm of the barycentric evolution space 

(free particle). If we then look for those vector fields Z that Lie-transport the orbltal 

presymplectic structure aorb, we end up with the nontrivlal symmetry so(3) x sl(2,Fl) 

(P = r = O) whose momentum mapping (4.1 ) reads (compare [25]) 

(4.23) I = m r x v - qq* rlr 

(4.24) E = m Iivi1212 

(4.25) D = m <v, r - vt> 

(4.26) K = m lit - viii2/2. 
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$5. BAR6MANN STRUCTURE5 AND RELATED CONFORI'IAL AUTOMORPHISI'15. 

We deal here with a new setting that incorporates Newton-Cartan structures and allows 

for a geometrically transparent definition of "conformal" nonrelativistic symmetries. 

• A Bargmann manifold [18] is a principal (FI,+) bundle ~:M-~M over a 4-dimensional 

smooth connected manifold M (spacetime) such that 

(5.1) M is endowed with a Lorentz metric g of signature (+ + + + -), 

the group generator I~ satisfies 

(5.2) g(E,E) = o; ~ E = o 

where ~ denotes the Levi-Civita connection of (M, gT. The difference with standard 

Kaluza-Klein theory is threefold : the principal fibration is assumed to be null rather 

than space-like, non-compact (no elementary "mass" for the time being) and parallel 

rather than merely isometric. 

f 

Tx" 

M 
T t 

(fig.2) 
rv 

The I -form T := g(I~) is basic and closed, hence 

(5.37 T = 11" T ; dT = O. 

51nce E Is in partlcular an isometry, the 2-contravarlant symmetric tensor 

(5.4) t := ii, g-I 

descends to M and (]~,T) satisfies (2.1 I, 12). Algebraic Inspection shows that the signature 

of ]~ is as in (2.47, hence (M,t,T) is a GaIilel structure. Thls point of view has 

independently been espoused in [48]. 
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Given two Infinitesimal automorphlsms ~, Y'of n : M -~ M('), 

(5.5) ~2xY : =  11, VX Y 

is a well defined vector field of M, depending only on the projections X, Y of X ~, Y~. Moreover 

~2 Is a Oalilel connection, in fact a Newtonian connection on (M, ]~, T) - hint: the curvature 

of ~ trivlalIy satisfies (2.13) where indices are now raised by g-l. We have thus 

associated to our Bargmann structure a unique Newton-Cartan structure. 

• Bargmann automorphlsms consist in those isometries of (M,g) that are also 

automorphlsms of the prlnctpal bundle il : M -~ M, i.e. 

(5.6) Barg(M, g, () := Isom(M,g) N Aut(M,E). 

Now Aut(M,E) extends Dill(M) and because isometric vertical automorphisms reduce to 

(R,+), Barg(M, g, E) is clearly a (R,,) central extension of GaI(M,~,,T,V) (see (3.2)) as 

expressed by the exact sequence 
e,a 

(5.7) I -* R-~ Barg(M,g,E)-, GaI(M, ~,,I:,V)-, I. 

• Consider M = R5with 

(5.8) g = 0 1 ~ = • 

I 0 

Then (~4,1 E) := (R5 g,E) iS a Bargmann structure - the flat Bargmann structure - 

that induces the flat Newton-Cartan structure and 

(5.9) Barg(R4, I, I~) 0 =: Bil 

is the subgroup of the affine de Sitter group S0(4, l)f x R5 that preserves I~, i.e. the group 

of all 6x6 matrices of the form [31,33] 

R v 0 r 

(5. I O) 0 I 0 t 

-tvR -v212 1 s 

0 0 0 1 

(') X'~ aut(M,~.) iff { X ~ F(TM), [X,~] : 0}. 



176 

where R E 50(3); V, r E FI3; t, S E FL In view of (5.7,10) the Bargmann group 

Bii=H6xFI5 is a central nontrivial (I~,+) extension of the Galilei group Gio. The 

introduction of U( 1 )_extensions labelled by the mass [ 1 ] will be explained later on, 

• In generalizing the notion of Bargmann automorphisms stricto sensu to the case of 

conformal Bargmann automorphlsms, we define 

(5.11 ) Conf(H, g, r;) := Conf(H, g) n Aut(M, 1~) 

with Conf(M, g) := { a E Diffloc(M); a" g = g2g; Q E C°°(M,F~ ") }, infinl tesimal ly 

(5.12) conf(M,g,F,):= { X'E F(TH); [~,X~] = 0; L ~ g = ,t g; ,I E C°°(M,F~)}. 

By using (5.3-5) and (3.16), we find that 

(5.i3) X E conf(H, g, F,) =~ X :=If- X E sch(H, y,~,V), 

and by repeating the preceding argument we get the exact sequence 

(5.14) O .-, F~ -., conf(~l, g,~) --, sch(l'l, y, "~, V ) .-, O, 

that insures that infinitesimal conformal Bargmann autornorphlsms centrally 

extend special chronoproJective automorphisrns (or 5chr6dinger transformations) 

of the underlying Newton-Cartan structure. 

In the flat case (5.8), a simple calculation yields 

(5.15) 'XEconf(F~4,1,~,) <~, X' = (¢~A B x B . I~At + t A + <xtx A + XxA)8/Sx A 

+ (oct2 + 2Xt + •)8/8t 

+ (-PAx A - (x/2xAxA + 0)8/8x 5 

with ~ E SO(3); p, t ~ F~3; c(, X, 9 E F~. Conspicuously, $chr6dlnger transformations (5.13) 

are most readily introduced in terms of Bargmann structures (compare (3.16)) whose 

infinitesimal conformal automorphisms (a subalgebra of 0(5,2) - rather than o(4,2)I) 

canonically define a (F~,+) central extension of the 5chrt~dinger Lie algebra. 

• The ~;0nformal structure of (H, g) is completely determined by the Wevl tensor C' 

(5,16) ~ijkl:= R'iji<l-2/3{ 81[iRj]k+glm Rm[igj]k }+ I/6R'81[igj]k 

(i, j, k, 1 = I ..... 5) which conveys all (traceless) information on the curvature R of (M, g). On 

a Bargmann manifold (M, g, I~) the identity 

(5,17) Rijkl Ek, O, 

holds (see (5.2)), The quantities Cijkl (5.16) and 
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.-.,,. e.,./ 

(5.18) Clj 1 := Cljkl~ k 

are thus tnvarlant under the substitution 

(5.195 g ~ g, := ~2 g; E, ,-, 1~* = E. 

entertng definition (5.11 ). Yet, to consistently define the Bargmann-Weyl tensor ~ of 

(H,g,l~.) wlth all symmetries characteristic of the Levi-Civit;~ curvature (ln particular 

(5.17)) we have to put cijl :- 0 in (5.18). Hence 

(5.20) ~ljk 1 := Rijk 1-2/3{  81[1Rj]k+ glmRm[igj]k }, 

(5.21 ) ~ l j  = ~'(f) I~l I~J, (f e CC°(H,~)). 

Note that ~ (5.205 does project on spacetlme I"1 as the chronoprojective Weyl curvature C 

(3.26,275. Details concerning 2nd-order chronoprojective Cartan structures can be found 

in [39]. 

• l~xamDle. Newtonian potentials V(r,t) associated with conformally flat Bargmann 

manifolds M = ~5 ~ (r = (xA), t, s), 

(5.22) g=6ABdxA®dxB+ dt ® ds+ ds® dr- 2V(r,t) dt® tit, 

(5.23) ~ = 8/85, 

satisfy 8ASBV = !/3 ~V 8AB, hence are of the general form 

(5.24) V(r,t) = a(t)r2/2 + < b(tS, r > + c(t). 

g6. THE SCHRODINGER AND LEVY-LEBLOND EQUATIONS. 

• The Schr6dinger equation (1.3) can be written on (~4,1,1~) as 

(6.1) A + 28485u~ = 0; 85u~ = im/h ~, 

where ~:  ~4,1 ~ ~ ls thus related to the usual Schr6dlnger wave function u,, :~3;1 ~ C by 

~(x, xS) = exp(lmx5/h) ul(xS. Our claim ls that (6. l ) reads intrinsically [ 18,48] 

(6.2) r~T = 0; ~(~)= im/h ~. 

0ravltational (minimal) coupllng is then straightforward : the Schr6dinger equation on a 

curved Bargmann manifold (H, g, ~5 ls exactly the same as in (6.2), £~ being the Laplace- 

Beltrami operator of (M, g). A quantum spinless test particle is described by a harmonic 

function ~ :H ~ such that s*~ = rn(s)~ (all s ~ (~,+)) where 
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(6.3) m(s) : :  e ims/h 
e~  

is a character of the structural group of ~:M- .M that defines the mass m of 

the particle. The corresponding spacetime wave function • (a section of the associated 

line bundle Mxm¢) satisfies the Schr6dinger-Kuchar equation [27,17,18] on the 

induced Newton-Cartan manifold('). 

The 5chrOdinger equation (6.2) is Bargmann conformally invariant. Hore 

precisely, let ~ 6 CC°(M, FI') and put as In (5.19) 

(6.4) g* := Q2g, I~* := ~. 

Clearly d£2^T = O, i.e. £~ is a function of time only and if R is the scalar curvature of 
ev  t - v  t ~  ev  ~-~  

(M, g) we readily get R* = Q-2 ~ = 0 since the field equations (2.14) Ric = (4~Gp + A) T ® 

are assumed to hold. Letting 

(6.5) uj* := Q-3/2 , 

we find the scale-invariance relationship 
e~a ~a  t~a 

~. ~7/2 ~3g ~ = O; 1~*(~*) = im/h ~*. (6.6) Og* = 

The mass is  invar ian t  against the substitution (6.4,5). Furthermore, i f  a E Conf(M, g, 1~) 

(5.1 ] ) then by (6.5,6), (a- I)" (Q-3/2 ~)  ls again a solution of (6.2) and conr(M, g, ~) acts on 

the set or solutions of the 5chrOdinger equation according to 

(6.7) ~ ~ a,(Q-3/2~).  

The associated infinitesimal action (see (5.12)) 

( ') In the setting of geometric quantization, one would consider wave functions as half- 

densities uJtm(locally uJtldetgll/4) of a (riemannian) configuration space (Q,g). 

Quantization of the geodesic flow on a curved configuration space leads to the 

5chrOdlnger equation 1to/at ~J~= -h/2m/~# ~J# (= -h/2m (Z~ - R/6) • Idet gl I / 4  R ls the 

scalar curvature of (Q,g)) (e.g. [42]). If (H,g,l~) is the Bargmann manifold M:=Q xFl2, 

g = g + dr® ds + ds® dt, 1~ = 8/8s, then the preceding SchrOdinger equation can be cast into 

the form : r~-~J-= O, LE~ ~ = im/h~ ~ where (bin denotes the Laplacian of half-densities 

of (M,g) (hint: R=R; det(g)=det(g)). If Newton - Cartan field equations (2.14) hold, Q 

is Ricci flat, we get rid of the extra term R'/6 and thus recover the equations (6.2). 
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N 

agrees in the flat case with Nlederer's (1.7-9) - cf. (5.15) and 2 = 2/Sdiv(X). In view of 
p J  

(6.3), Conf(M, g, F~) "acts" on the solutions of the SchrOdinger equation via the quotient 

(6.9) m_Conf(M, g, I~) ..= Conf(M, g, E,)Iker(m). 

In the case of (I~4,1E) , we recover the nontrlvlal central U(1) (-~IRlker(m)) extension 

m_sch13 of Scht2. 

• The Levy-Leblond eouatlon [29,32] for a spln 112 particle Is strictly equivalent to the 

5chrOdlnger-Paull equatlon In the free case. It admits a Bargmann Invariant formulation 

hidden In the original derivation of the "square root" of the SchrOdlnger equation. 

The Clifford algebra over a 5-dimenslonal space admits an irreduclble 4-dlmenslonal 

complex representation. In the case of B4, I with Lorentz metric (gab) given by (5.8), we 

may choose the t-matrices generators as 

(6.1 O) t A :: ( O A 0 

0 -aA 

; t4 :=l  01 0 ; 

0 I°o "o 
where the OA'S (A = 1,2,3) denote the Paull matrices. We have (a, b : 1 ..... 5) 

(6. l I) t(a tb) = gab. 

The elements ~ of the Clifford algebra (generated by !(C2,2 and the ~'s (6.10)) such that 

~-  I ta~= Aa b t b (AESL(5,FI)) form the 7/2-covering group SpIN(Ft4, l) of the de Sitter 

group S0(4, ] )t. The subgroup SpIR(B 4, ], I~) that leaves ~'5 ( :  taI~ a ) invariant is isomorphic 

to SU(2)xR3, the universal covering of the homogeneous Galilei group H 6 (2.2) (see also 

[4,5] for earlier related results). The representation splnor-space E2,2 Is furthermore 

endowed wlth a canonlcal quaternlonlc structure. 

In our formalism, the Levy-Leblond equation simply reads [30] 

(6.12) taOa ~ = O; EaOa ~ = Imlh ~. 

Thus ~(x, x 5) = exp(Imx51h) ~(x); u2 = (~', ~") Is a C2,2-valued function of FI3; I such that 

• ', ~" both satisfy the free Schr6dinger-Paull equation. It is worth noticing that (6.12) Is 

well adapted for the geometric prescription of (minlmal) gravltatlonal coupling (cf. the 

C.O.W. experiment [ 14] on neutron interferometry in the gravltatlonal fleld). To that end, 
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assume the existence or a spin structure Spin(M, g,I~), I.e. a SU(2)xR 3 principal bundle 

that equi-varlantly Z2-covers the bundle of Galilei frames (a, b, j = 1,...,5) 

(6.13) H6(M,g,~) := { (ea =eJaSj)xE~, g(ea, eb)=gab, es=E }. 

The local spinor-tensors are then defined by 

(6.14) ~j := j)a eJa. 

Given a splnor field ~ E F(Spln(M,g,E)x(su(2)xFI3){2,2), its covarlant derivative Is 

defined via a section of H6(H,g,~) by 
Pa #-~ Pa  

(6.15) ~ j  ~ := ejT~ + r j~ ;  r j  := 1/4 ~2j eka ~k ~a 

The tovariant Levy-Leblond equation is then 
N t%a ¢ v  N ¢~a 

(6.16) D~ := i~J ~Tj ~ = 0; LEg = l~j Wj ~ = lm/h ~. 

By "squaring" it, we recover the 5chr/~dinger equation (6.2) modulo a term involving the 

scalar curvature R that vanishes once Newton's field equations are taken into account. 

It turns out that the Levy-Leblond equatlen (6.16) is also Bargmann conformally 

lnvariant since it transforms under the substitution 

(6.17) g, = ~2 g; ~* = 1~; ~,  = 9-2 

according to 

(6.18) D'~" = Q-3 D~ = 0; L~'~" = im/h ~'.  



181 

5] BROOKE, 
6] BURDET, 
7] BURDET, 
8] I]URDET. 
9] BURDET, 

[1 O] BURDET, 

1 ] BARGMANN, V. Ann. Math. 59 1 (1954). 
2] BARUT, A.O. Helv. Phys. Acta, 46 496 (1973). 
3] BOYER, C.P. & PENAFIEL, M. Nuov. Cim. 31B 195 (1976). 
4] BROOKE, J.A. Ph.D. Thesis, University of Alberta 1980 (unpublished). 

J.A.J. Math. Phys. 19 952 ( 1978); 21 617 (1980). 
6., DUVAL, C. & PERRIN, M. J. Math. Phys. 24 1752 (1983). 
6 ,  DUVAL, C. & 
6., DUVAL, C. & 
6. & PERRIN, M. 
6. & PERRIN, M. 

PERRIN, M. Publ. R.I.M.5. 19813(1983). 
PERRIN, M. Lett. Math. Phys. 10 255 (1985). 
Lett. Nuov. Cim. _4 651 (1972). 
J. Math. Phys. 26 292 (1985). 

[I I] BURDET, G. & PERRIN, M. "Exact Solutions of Nonlinear SchrGdinger Equation in 
Time Dependent Parabolic Density Profiles", Preprint Marseille CPT-851P. 1770 (to 
appear in Lett. Math. Phys). 

[12] BURDET, G., PERRIN, M. & SORBA, P. Comm. Math. Phys. 34 123 (lg73). 
[ 13] CARTAN, E. Ann. Scient. Ec. Norm. Sup. 40 325 ( 1923); 4__].1 1 (1924). 
[14] COLLELA, R., OVERHAU5ER, A.W. & WERNER, 5.A. Phys. Rev. Lett. 34 1472 

( 1975), 
[ 15] DIXON, W.6. Comm. Math. Phys. 45 167 (1975). 
[16] DUVAL, C. "Quelques procGdures g~om~triques en dynamique des particules", 

Th~se, Universit~ d'Aix-Marseille 2, 1982 (unpublished). 
[ 17] DUVAL, C. & KONZLE, H.P. Gen. Rel. Gravit. 16 333 (1984). 
[18] DUVAL, C., BURDET, 6., KONZLE, H.P. & PERRIN, M. Phys. Rev. D 31.1841 (1985). 
[19] EHLER5, J. "Ober den Newtonschen Grenzwert der Etnstelnlschen Gravitations 

theorle", In OrundlagenProbleme der modernen Physlk, p. 65, edited by NITSCH, J. et 
al., Bibliographisches Institut Mannheim, 1981. 

[20] HAGEN, C.R. Phys. Rev. D 5_ 377 (1972). 
[21] HAVAS, P. & PLEBANSKI, J. J. Math. Phys. 19 482 (1978). 
[22] HAVA5, P. Rev. Mod. Phys. 36 938 (1964). 
[23] HAVA5, P. HeN. Phys. Acta 45 802 (1972). 
[24] HORVATHY, P. "Etude gGomGtrique du monopole magn~tique", Th~se de 3 ~me cycle, 

Universit(~ de Provence, 1983; J. Geom. Phys ± 39 (1984). 
[25] JACKIW, R. Ann. of Phys. 129 183 (1980). 
[26]JAKUBIEC, A. & KIJOWSKI, J. Rep. Math. Phys. 1021 (1976). 
[27] KUCHAR, K. Phys. Rev. D 22 1285 (1980). 
[28] KUNZLE, H.P. Ann. Inst. H. Poincar(~ 17 A 337 (1972) and references thereln. 
[29] KUNZLE, H.P. & DUVAL, C. Ann. Inst. H. Poincar~ 4._]1 363 (1984). 
[30] KUNZLE, H.P. & DUVAL, C. "Relativistic and Nonrelativistic Classical Field 

Theory on F ivedimensional Spacetime", Preprint CPT-85/P. 1795, Marseille. 
[31] LEVY-LEBLOND, J.M. "Galilei Group and Galileian I nvariance", in Group Theory and 

its Applications, p. 221, edited by LOEBL, E.M., Vol 2 (Academic, New York, 1971 ). 
[32] LEVY-LEBLOND, J.ff. Comm. Math. Phys. 6_ 286 (1967). 
[33] LEVY-LEBLOND, J.M. Rlv. Nuovo Cimento 4 99 (1974). 
[34] MOLLER-HOISGEN, F. Dissertation GOttingen, 1983 (unpublished). 
[35] MULLER-HOI55EN, F. Ann. Inst. H. Poincar~ 40 21 (1984). 
[36] NIEDERER, D. HeN. Phys. Acta 45 802 (1972). 
[37] NIEDERER, U. Helv. Phys. Acta, 46 191 (1973). 



182 

[38] NIEDERER, U. Helv. Phys. Acta, 47 119 (1974). 
[39] PERRIN, 11., BURDET, 6. & DUVAL, C. "ChronoproJectlve Invarlance of the 

Fivedimenslonal SchrOdlnger Formalism", Preprint CPT-841P. 1668, Marsellle (to 
appear in Class. & Quant Orav.). 

[40] PERROUD, I'I. Helv. Phys. Acta 50 233 (I 977). 
[41]RAY, J. Phys. Rev. A 26 729 (1982). 
[42] SNIATIEKI, J. Geometrlc Quantlzatlon and Quantum Mechanlcs, Sprlnger 1980. 
[43] SOURIAU, J.l~l. Structure des systEmes dynamlques (Dunod, Parls, 1970). 
[44] 50URIAU, J.l'l. "Construction expllclte de ]'indlce de Maslov", In Proceedlngs of 

the 4th Internatlonal Colloqulum on Group Theoretlcal Methods In Physlcs, 
Nljmegen 1975. Lecture Notes in Physics, Vol. 50, p. I 17, Sprlnger 1976. 

[45] SOUIIIAU, J.l'l. "MEcanique classique et gEomEtrle symplectique",' Preprint 
CPT-841PE. 1695, Marseille. 

[46] TRAUTMAN, A. C.R. Acad. Scien. PARIS 257 617 (1963). 
[47] TRAUTMAN, A. "Comparison of Newtonian and Relatlvlstic theorles of space- 

tlme", In Perspectlves in Geometry and Relatlvlty, p. 413, edlted by HOFFMANN, B., 
Indlana Unlverslty Press, Bloomlngton 1964. 

[48] TULCZYJEW, W.I'I. "An Intrlnslc Formulation of Nonrelatlvlstlc Analytlcal 
Mechanlcs & Wave Mechanics" Preprlnt IFM-Torlno 1985 (to appear in d. Oeom. Phys). 



WAVE EQUATIONS FOR CONFORM~L MULTISPINORS* 

Miguel Lorente 

Max Planck Institut, D-8130 Starnberg, West Germany 

and 

Facultad de Ciencias Ffsicas, Universidad Complutense 

28040 Madrid, Spain 

I. INTRODUCTION 

In 1936 Dirac wrote a famous paper I in which he derived a con- 

formal invariant wave equation for massless syst~ns of spin 0, 1/2 

and i, in a sJmilar fashion to the relativistic wave equation of mas- 

sive particles of spin 1/2, 

The method used by Dirac is extended to massless particles of 

arbitrary spin. This generalization to multispinor is equivalent to 

that used by Bargmann and Wigner in his equations of relativistic pal 

ticles of arbitrary spin. 

The free states obeying the conformal wave equations can be 

used to describe the interactions of the fundar~ental entities, pro- 

posed by Weizsacker (urs), giving raise to superselection rules as it 

has been done by Castell 2 and Heidenreich 6. 

II. SPINOR REPRESENTATION OF THE CONFORMAL GROUP 

For the generators of the fundamental representation of the 

conformal group, Dirac I uses the operators: 

~a = (YI' Y2' Y3' Y4' Y5' i) 

Ya = (YI' Y2' Y3' Y4' Y5' -i) 

where the 6's and y's satisfy ~ay b + ~bYa = 2qab, qab = 

= diag(+, +, +, -, -, +) being the metric tensor. The generators for 

the fundamental representa£ionare then 

= 1 (Xa8 b Xb~a) + 2~ BaYb H Mab + Sab Jab ~ 

The generators of the contragradient representation a~e obtained by 
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interchanging the B's and the y's, namely , 

= 1 
Jab T (Xa~b XbSa) + ~i YaSb 

Both representations have the spin content (1/2,0) and (0,1/2) respect 

ively. These representations act on some spinor fields of one index 

~e and ~& respectively. 

Multispinor field transform under the direct product of the 

fundamental and contragradient representations (2j and 2k times, re- 

spectively). They transform under the infinitesimal generators in the 

following way 4 : 

ab 1 z~ ~, 
= s ~-[ = (~aYb) ~, 

6~i~2 ~2j i=l ~i~$~i~2 °" . . . .  2j 
2k ~' . 

ab i l 
• .. = s ~ [ (YaBb)~, • . . • 

6@~1&2 " ~2k i=l i~i~2 " "~2k 

where the multispinors are traceless and totally symnetric in the ~. 
1 

and £ . They correspond to the representations (j+l, j, 0) and (k+l, l 
0, k) in the Yao 3 classification. All these representations are de- 

fined on the light cone (x2=0) and therefore, using homogeneous co- 

ordinates on a 4-dimensional manifold, when restricted to the Poinca- 

r6 group, they become massless particles of arbitrary spin 4. 

The wave equation will be worked out with the help of the se- 

cond order Casimir operator, i.e. 

1 jab 1 Mab MabSab 1 S S ab 
C2 = [ Jab = [ Mab + + ~ ab 

Each term of the Casimir operator commutes with the others and 

with the operator xa~ . Therefore, they must have a common set of a 
eigenfunctions, which are at the same time, the carrier space where 

the representation acts. Let us calculate the three parts of the Ca- 

simir operator. 

xa~ - x~ a 

1 M Mab= 1 M 2 x 2 S 2  2 
ab _ ~ = - + (x?) 

M S a b  ab =-MS =-(Sx) (~) + (xD) 

=-(Tx) (~) + (x~) 

2j 

= - ~ (~x) (r) (~) (r) 
r=l 

2k 
= _ 

r=l 

+ 4 (x~) 

1 
' (J = 7' k = 0) 

, (j = 0, k = ~) 

+2j(x~), (j, k = 0) 

(yx) (r) (Y~) (r) +2k(xZ)' (J = O, k) 

where the index (r) means the direct product of the unit matrix with 
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the matrix B a, 7 a in the place (r). Besides 

1 S sab 1 2~ 2~ 
ab = - ~ (($aTb) (r)) ( (6aYb) ) 

r=l i=l (r) 

1 2k 2k 

=- ~ (r ~=I-(YaSb ) (r)) (i=l ~ (ya6b) (r)) 

(j, k=0) 

(k, j=0) 

The eigenvalues of the last operator can be calculated with the help 

of the alternative expressions 3 

S sab = S 2 = 2(52 + ~2)+ Ro(Ro+4)_2(p p++Q Q++S S++T T+) 
ab . . . .  

and the particular representation of the generators 

~(~ 01 ~{0 01 ~[~ o 1 J =  , K= R = 
0 0 0 ~ ' o 0 -i 

[<°0 ~ ( :)I E< ° °0)+(° 0°)] p+ = ~i i0 + 00 3 , p_ = ½ 

0+ ~[(°0 01 (°0 :I) 0~I<~ °01(: :}I 
3 ~i(i :1> c° ~>] ~E(o o)(o Ooi ~ 

s+  g + i \ o  2 , s_  7 c~ 1 0 o 2 j 

E<: (Oo o ] E<°:) / :ll T = i + [  0 

Applying S 2 to the highest 

(j+l, j, 0) we get 

state of some irreducible representation 

S 2 = 2j (j+l) + j (j+4) 

and similarly for the representation (k+l, 0, k) 

S 2 = 2k(k+l) + k(k+4) 

Finally the operator (x~) has the eigenvalue n,i.e, the homogeneity 

degree. Collecting all the eigenvalues of the operators M 2, MS, S 2 

and (x~), we get for the Casimir operator: 

C 2 = n 2 + 4n + m + 3j (j+2) = 3(j2-I) 

and similar expresion for the representation (k+l, 0, k), 

C 2 = n 2 + 4n + m + 3k(k+2) = 3(k2-i) 

III. WAVE EQUATION FOR THE SPINOR FIELD OF j -- I/2 

Following Dirac I, We take the eigenvalue equations for the oper 

ator MS as the wave equation. 
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{-(~x)(¥a) + (x~))~ =m~ 

(x~) ~ = n~ 

therefore (Bx) (~)~ = (n-m) ~ where we have O~itted the spinorial in- 

dex. We have two cases: 

n ~ m. Multiplying by (y~) frcal the left and using (A 4) we 

get 

(y~) (~x)(y~)~ = [6 + 2(x~) - (y~)(B~)](7~)~ = (n-m) (y~)~ 

In the light cone (B~) (7~)~ = ~2~ = 0, therefore 

(4 + 2n) (~)~ = (n-m) (y~)~. 

Since (72)~ = 0 implies the trivial solution ~ = 0, we are left with 

4 + 2n = n-m or m = -n - 4 . 

This equation together with Casimir C 2 gives n = -i, and m = -3, res- 

pectivelY. As Dirac I proved, the solution can be written 

= (~x)× 

where X is an arbitrary scalar function with homogeneity degree 

n' = -2. 

n = m. From the Casimir operator, we obtain n = m = -2, -3. In 

this case, Dirac proved I that there is a gauge freedom, i.e. 

+ ~, = ~ + (~x) x 

In order that the wave equation should be satisfied we must have 

(~x) (72) (Bx)x = (6 + 2n') (~x)x - x2(~)X = 0 , (x~) X = n' X 

If n'=-3, we can define the function X out of the light cone and 

multiplying from the left by (Tx) we get (7x) (~)X = 0 which isthe 

wave equation for the field (j=0, k=i/2). As Heidenreich 6 has pointed 

out, the last equation corresponds to some irreducible representation 

(5/2, 0, i/2) which is contained in the indeeomposable representation 

(3/2, 1/2, 0). If we use the representation (3/2,0,1/2) we can carry 

out the same arguments, with the only interchange of 8's and ~'s. In 

this case, the gauge freedom gives the indecompo sable representation 

D I(3/2,0,1/2) containing the irreducible representation D(5/2,1/2,0), 

as it can be seen in case b) of Appendix B, with n=l. 

IV. WAVE EQUATIONS , E OR sP!NOR FIELD S OF 3 = 1 

The eigenvalue equation for the operator MS gives 
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- + 2(XZ) }4 = m4 or {- (BX)l (Y~) 1 (Bx)2 (Y~) 2 

{(BX)l(y3) 1 + (Bx)2(Y~)2} ~ = (2n-m) 9 

As before we have two cases: 

2n ~ m. Applying (Y~)l (Y~)2 from the left we get 

2(6 + 2(n-l)) (y3)l(Y~)24 = (2n-m) (y~)l(Y3)24 

Then m = 2 (-n - 4) and from the Casimir operator n=-l, and m=-6. In 

this case, the solution can be written as 

= (SX)l(BX) 2 X with (x~) X = (n-2) X 

where X is an arbitrary scalar function of degree n' = -3. 

2n = m. From the Casimir operator, we get n=-3, m = -6. We 

have a gauge freedom 

÷ ~, = 4+ (Bx)IX , (x~)x = (n-l)x 

The wave equation imposes 

{(Bx) 1 [-(YX)l(~) 1 + 6 + 2n'] + (Bx)2(Y~)2(PX)l} X = 0 

Multiplying by (yx) 1 on the left, we get 

L-x2(yX)l(~3) 1 + 6 + 2n + 2 x 2 
' (~x) 2 (y~) 2~ X = 0 

If n'=-4, it can be proved from the Casimir operator that this 

equation corresponds to the representation (3,1/2,1/2) which is an 

irreducible representation contained in the indecompos able represen 

tation (2,1,0), as it can be seen in case b) of Appendix B, with n=2. 

V. WAVE EQUATION FOR MULTISPINOR FIELDS OF ARBITRARY SPIN 

The eigenvalue equation for the operator MS gives 

2j 

(~x)i(Y~)i~ = (2jn-m)~ for repr. (j+l,j,0) 
i=l 

with two cases: 

2jn ~ m. Applying H(y~) from the left, we get 
i i 

2j(6 + 2(n-l) H (y~)i 9 = (2in-m) H (y~)i 9 
l i 

Therefore m = 2j (-n- 4) hence n = 2j - 3, m = -2j (2j + l) 

2~n- m. From the Casimir operator, we get 

n = -(2j + i) , m = -2j (2j + i) 

Again we have a gauge freedom: ~ ÷ 4' = 4 + (~x)ix . The wave equa- 

tion imposes the following conditions on the function X : 
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F-x2(yX)l(~)l + 6 + 2n' + 2(2j - i) + x 2 ~ (Bx)i(Y~)i~ X = 0 
- i~l 

If n' = n-i = -2j-2, X satisfies the wave equation corresponding to 

the irreducible representation D(j+2, j- ~, ) contained in the in- 

decomposable representation DI(J+I,j,0), as it can be seen from case 

b) with n = 2j in Appendix B. 

VI. WAVE EQUATIONS INVARIANT UNDER SO(4,2) 

The simplest nontrivial representation of S0(4,2) including re- 

flexions is 8-dimensiona#'5. It is built up with the help of the matri- 

ces L a (a = 1,2,...,8). Satisfying {La,L b} = 2qa b. In the Dirac basis 

they are represented by 

Lp = Yp x a 3 , L 5 = i ~ x 0 2 , L 6 = - ~ x o 1 

The wave equation now reads for m = n =-2 

LaLbMab ~ = -2 4 

If we introduce L 7~-iLoLIL2L3L5L6 , which satisfies {L7,L a} = 0, 

it is easy to prove that ~± = 1/2(1 ± L7) ~ is also a solution of the 

wave equationt and @± is an eigenfunction for L7, with eiqenvalues 

±i, respectively. 

Applying the operator (~ - L5L 6) to the wave equation, in a re- 

ference system in which the coordinates take the values x a = 

= (0,0,0,0,i,i), one easily obtains (i - L5L6) ~ = 0. But L5L 6 H A 

is the intrinsic dilatation operator, therefore A@ = ±4 . Writting 

L 7 and L5L 6 in Dirac basis we obtain only two independent components 

for the wave function. 

If we take the indecomposable representation (5/2,0,1/2) acting 

on the: wave function, @, with degree of homogeneity n = -3, we can 

single out the invariant subspace, using the appropiate projection 

operator, as in Ref. 4. 

APPENDIX A. SOME USEFUL RELATIONS 

2 
AI. (~x) (yx) = (7x) (~x) = x 

A2. ~ (x~)(~x) = (Bx)(x~) + (~x) 

(xa) (yx) = (~x) (xa) + (yx) 
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A3 

A4 

As 

I (~)(xa) = (x:)(~a) + (~a) 

(7~)(x~) = (xa)(¥~) + (7~) 

(Bx) (3~) + ($3) (yx) = 6 + 2(x~) 

(yx) (63) + (y3) (Sx) = 6 + 2(x~) 

I [(~x) (y@)]2 = _x2~2 + ~4 + 2(x~)] (~x)(~(~) 

[(yx) (8~)]2 = _x2~2 + [4 + 2(x~)] (yx)(8~) 

APPENDIX B. INDECOMPOSABLE REPRESENTATION OF SU(2,2) DEFINED ON THE 

ENVELOPPING ALGEBRA 

Let ~i = (0,0,I,-i), ~2 = (i,-I,0,0) be the positive compact 

roots and el = (0,i,0,-i), ~2 = (i,0,-i,0), ~3 = (l,0,0,-1), B = 

= (0,1,-1,0) the positive non-compact roots of the Algebra A 3. Let us 

defined the corresponding root vectors 

• , , Ea , E~ 
E~I E~2 ' E~I E~2 3 

A basis for the envelopping algebra U of all the vectors associ- 

ated with negative roots, can be taken as 

~_ ={n , E C E m E n r E s E t } 
-~i -~2 -~3 E-~ -~i -~2 

where ~, m, n, r, s, t are non negative integers, and ~ corresponds 

to all the exponents equal to zero. A representation for the algebra 

su(2,2) has been given in Ref. 7, provided we make the following iden 

tification 

÷+ , ÷÷ E ++ if42 E-~ 1 f43 E-~ 2 f21 ' -a I 

E_~2++if31 , E_~ 3 +÷if41 , E_$ ++ if32 

A Verma module PA of su(2,2) is defined by the conditions 

H i ~ = i i ~ , i = 1,2,3,4 i i e 

E ~ = 0 for all positive roots 

Verma submodules PM are defined by D_ Y where Y is the extremal 

vector corresponding to the highest weight M, given by the conditions 

HiY = MiY , i = 1,2,3,4 M i e 

E Y = 0 for all the positive roots 
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The extremal vectors of su(2,2) have been given in Ref. 7. 

In the case that PM C PA ' the representation PA is called 

indecomposable (it contains an invariant subspace). The quotiens of 

PA with respect to all PM becomes irreducible. 

We can defined a bilinear form 8 in the envelopping algebra U by 

the following operations: 

(x,y) -= A(Y(x°y)) , x,y ~ U 

o 
where x means conjugation, namely, 

o E d H o E~ = E , = H , 

7(x), the projection into the subspace ~ o generated by Caftan ge- 

nerators H 
f 

Y(X) = Jx if X @ Q O 

0 , o t h e r w i s e  

and A(H ) is a linear form in the dual space of the Cartan subalgebra~ 

i.e. 
(A,a) 

A (Ha) = 2 ~ , 

A being the highest weight of PA 

The bilinear form becomes a scalar product when it is non-de- 

generate positive definite namely (x,x) > 0 and (x,x) = 0 iff x = 0. 

All the extremal vectors Y satisfy (Y,Y)=0. We call a proper 

maximal ideal I ° of PA ' a subspace generated by all the vectors of 

null norm. 

With the help of the bilinear form we can define infinites/mally 

unitary representations for the algebra su(2,2), by the conditions8: 

i/ The components of the highest weight A are real, 

ii/ the scalar product is a non-degenerate definite positive bi- 

linear form. This is true iff 

A(Hp) ~ 0 for all compact roots PI' ~2 

i(H a) + R(H a) ~ 0 for all non-compact roots al,e2,~3,B. 

In Ref. 8 we have calculate the highest weight and extremal vec- 

tors of the unitary representations of su(2,2). A basis for these 

representations with envelopping algebra U, is given, by the quotient 

space of the Verma module PA with respect to the maximal proper 

ideal I o. This ideal is generated by all extremal vectors quoted 

below. 
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-m-2 3m+2 
case a) A = ( , ---~--, ---~--, ), m = 1,2 .... 

Extremal vectors: Y = E m+! , M = A-(m+l)~l 
-ZI 

Y = E_Z 2 , M = A- D2 

Y = E_~E_~I-mE~I, M = A- e 1 

-3n-2 n+2 n+2 
case b) A = ( ' ----4--' -~--' --~- )' n = 1,2,3 .... 

Extremal vectors: Y = E_~ 1 , M =A - ~i 

Y = E n+l , M =A - (n+l)~ 2 

-~2 

Y = E_~E_~ 2 + nE_~ 2 t M =A - ~2 

-3n-m n+3m 
case c) i = (~ -i, ~ -i, - ~  +i, +i), n,m = 1,2,3... 

Extremal vectors: Y = E m+l , M = i - (m+l)~ 1 

-~i 

E n+l , M = i - (n+l)~ 2 
Y = -P2 

M = i - e3 y = E_~E_~IE_~2-mE_elE_~2+nE_e2E_~I-mnE_~3 , 

Finally we can calculate the restriction of su(2,2) to the ma- 

ximal compact subgroup SU(2)xSU(2)xU(1) given by its generators 

J+ = ' J3 = ½ (HI-H2) K+ = E+ , K3 1 
- E±~2 ' - -~i = ~ (HI-H2) 

1 
R ° = ~ (H 1 + H 2 - H 3 - H4) 

Defining the eigenvalues of J3' K3' Ro by j,k,d, respectively we have 

the following correspondence with the components of the highest 

weight A: 

j = [ (A 1 - A 2) , k = (A 3 - A 4) , d = (AI+A2-A3-A4) 

9 With this identification we obtain the standard classification 

of all the unitary representations of su (2,2) in ~_ (equivalent to 

negative energy), defined by the ntmbers (j,k,d), 

case a) (0, ~ , m m - ~ -i) : mass = 0 , helicity = 

n ~ n 
case b) (~, 0, - -i) • mass = 0 , helicity = 

nem case 21, ass 0 spin 

m case d) (0, , < - -i) : mass ~ 0 , spin = 
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n n n 
case e) (~ , 0 , < - ~ - i) : mass ~ 0 , spin = 

case f) (~ , ~, < m -~-~-2) : mass ~ 0 
n+m spin = , ... ,--~-- 
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ABSTRACT 

Conformal transformations of spinor fields are discussed from the global point 

of view. The two inequivalent spinor structures exist on the minimal conformal com- 

pactification M of the Minkowski space time. They are interachanged by the space and 

space-time inversions. It is suggested that Dirac spinor fields should be coupled to a 

gauge potential in order to get a nontrivial unitary representstion of the conformal 

group in the space of solutions of massless Dirac equation on M. 

i. INTRODUCTION 

There are several good reasons for considering the conformal symmetry in physics 

[c.f.l-5]. From the differential-geometric point of view, conformal transformations in 

the Minkowski space-time R 1'3 exhibit undesirable singularities either on a null cone, 

or on a null plane. A way out is to pass over to a bigger space, which we assume to 

1,3 
be a minimal one, so that only a lower-dimensional part is added to R (known as the 

'light cone at infinity'). Obtained in such a way M, the minimal conformal compacti- 

fication of Minkowski space-time, has a nontrivial global topology. In this paper we 

are interested in spinor fields on M, and, more generally, in global conformal trans- 

formations of spinor fields. 

There are two interesting models for M. In the first one, where M is the pro- 

jective null cone in R 2'4, a pair of 4-component spinors arises locally from the 8-com- 

ponent spinor of S0(2,4). Extending them to the whole M seems to be inconsistent ~9]. 

In this paper we work with the second realization of M, as an underlying manifold of the 

unitary group U(2). The description of spinor structures on U(2) is straightforward. 

After introducing the general setting for global conformal transformations of 

Dirac spinor fields and implementing the conformal group in a unitary way, we describe 

the conformal transformations of spinors on U(2) and interprete two kinds of spinor 

* On leave of absence from Institute of Theoretical Physics, University of Wroc%aw, 

Poland. 

** Permanent address: Institut f~r Theoretische Kernphysik, Universit~t Bonn, 

Nussallee 14-16, D-5300, West Germany. 
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fields in terms of asymptotic conditions in Minkowski space-time. 

The content of the paper is as follows. In §2 we recall the way in which one 

introduces spinor fields in curved space-times and formulate a general setting for 

lifting conformal transformations to spinors. We describe the two inequivalent spinor 

structures on U(2) in §3. We characterize in §4 the form which the two related kinds 

of spinets assume after pull back to Minkowski space-time. In §5 we present the action 

of the full conformal group on spinor fields on U(2). We obtain the spectrum of the 

Dirac operator in §6. Finally, §7 contains a discussion of our results. 

2. CONFORMAL TRANSFORMATIONS OF SPINOR FIELDS: GENERAL SETTING 

Let M be a connected, four-dimensional, Lorentzian space-time equipped with a 

4 
metric tensor g. Denote by D the Dirac representation of the group Pin(l,3) in C , 

where Pin(l,3) is the nontrivial double covering of the full Lorentz group 0(1,3) 

0 + Z 2 ÷ Pin(l,3) ~ 0(1,3) ÷ 0 (2.i) 

and p is the vector (twisted adjoint, c.f. [6]) representation. Dirac spinet fields 

are defined as D-equivaDiant 

~(ph) = D-l(h) ~ , (2.2) 

4 
functions ~ from some principal Pin(l,3)-bundle S into C . Here ph denotes the right 

translation of p e S by he Pin(l,3). (The equivalent definition is in terms of sections 

associated bundle S XDC4). One requires the usual relation between spinors and of the 

tensors: the tangent bundle TM of M has to be isomorphic to the vector bundle associated 

to S with the vector representation P of Pin(l,3). This is equivalent to the existence 

of spinor structure S, q on M, i.e. prolongation of the bundle F of orthonormal frames 

to the structure group Pin(l,3), described by the commutative diagram 

S + S x Pin(l,3) 

( 2 . 3 )  
q + + q x p  

F ÷ ~ x 0(1,3) 

where the horizontal arrows denote right actions. If the structure group 0(1,3) of F 

reduces to a subgroup G, the structure group Pin(l,3) of S reduces in the natural way 

to H, the double cover of G. For instance, G = SO (1,3) and H = Spin (1,3) ~SL(2,C) if 
o o 

M is space and time oriented. The topological conditions for M to admit a spinor struc- 

ture are well known [7,8], c.f. also [i0] as well as the possibility of weakening the 

obstructions by coupling spinors to an external gauge potential (generalized spinor 
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structure, or spinC-structure in the case of gauge group U(1) [6,16,17,18 ]~ 

Assuming that a spinor structure exists on M, it is, generally, not unique. 

Two spinor structures S,q and S',n' are equivalent if, and only if, there exists a 

(strong, or based) bundle isomorphism 8: S'+ S , which intertwines q and ~': q'=n°8. 

The equivalence classes of spinor structures are in a bijective correspondence with 

elements of the first cohomology group HI(M,Z2 ) of M with coefficients in Z 2 [9,10] or, 

equivalently, with distinct homomorphisms from ~I(M), the fundamental group of M, into 

Z 2 [ii]. Apart from the possible inequivalence of S and S' as principal bundles, two 

spinor structures S,q and S,q' may be inequivalent due to different morphisms q and 

q'. In this case the two distinct covariant derivatives V and V' can be defined. They 

are both related to the Levi-Civita connection on F, pulled back to S either by n, or 

by ~' respectively (we identify the Lie algebras of Pin(l,3) and 0(1,3) by means of 

Tp, the derivative of p). Quite often one can perform a compensating Pin(l,3)-gauge 

transformation in a dense submanifold of M, and work with the same local expression for 

the covariant derivative V . Then, spinor fields related to S, q' obey antisymmetric 

boundary conditions along all noncontractible loops in M which represent homotopy 

classes mapped into -I~Z by the homomorphism corresponding to spin s~ructure S,~' 
2 

The possible physical relevance has been discussed in the literature [12,13,14,15]. 

Now we formulate general results [20] on lifting conformal maps to morphisms 

of spin structures, which are needed in the sequel (c.f. [21] for the connected com- 

ponent of the group of isometries). Let f: M' + M be a gonformal map with a positive 

2 
conformal factor G: M ÷ R, i.e. f*g = £ g', where g' and g are metric tensors respect- 

ively on M' and M. Denote by f: F' + F the natural morphism between bundles of ortho- 

-i 
normal frames over M' and M induced by the rescaled derivative £ Tf of f. 

Proposition. 

For any spinor structure S,n over M there exists exactly one spinor structure 

S',n' over M' such that a given conformal map f: M' + M and the induced bundle morphism 

f: F' + F lifts to a bundle morphism f: S' 

Lifting ~ is unique up to a sign. 

+ S making the diagram (2.4) commute 

*b 

f 
s' s 

F '  - -  F 
t, + 

f 
M' M 

(2,4) 

For M' = M and f ~ Conf (M), the connected component 
0 

of conformal group of M, t h e  a s s i g n m e n t  f + ~ p r e s e r v e s  t h e  c o m p o s i t i o n  r u l e  (up  t o  a 

sign). This yields a representation either of Conf (M),or at most of its double cover, 
0 
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in the space of spinor fields by 

~'(p') = ~ ~(f(p')). (2.5) 

The scaling degree 3/2 is fixed by requiring the invariance (up to factor) of the mass- 

less Dirac operator 

(~)' = n-l~ ~. 

A conformally invariant scalar product can be defined in the space of solutions of the 

massless Dirac equation on a Lorentzian manifold with a global space-like hypersurface. 

After passing to equivalence classes with respect to the induced norm one can unitarily 

implement Conf (M) in the resulting Hilbert space. 
o 

3. TWO INEQUIVALENT SPINOR STRUCTURES ON M=U(2) 

Let the points of the Minkowski space-time R I'3 be represented by real linear 

0 i 

%=(i 0 )' 
m i 0), 

combinations x = x qm of antihermitian Pauli matrices ~m, m=0,i,2,3; ~=(0 i 

0 1 i 0 ). Let 
~2=(-i 0 )' ~3=(0 -i 

z (x) =A I (x+~a) (3.1) 
m 8T o m 

1 , 3  
be the standard orthonormal frame in R . Consider the underlying manifold of the 

unitary group U(2) together with the pseudoriemannian metric tensor, defined by the 

global right invariant frame qR(u) ~ {(~ )R(u)}, or, equivalently by the left invariant 
m 

one ~L(u) ~ {(g )L(u)}, where to any antihermitian 2x2 matrix y we associate the two 
m 

vector fields on U(2) by 

yR(u) = ~ [ [(exp ~gu] and Y L(u) ~ 1 ~ o = 3~ o [u(exp ~y) ] (3.2) 

The Cayley map 

f : R 1'3 + U(2) , :x + u = (l+x)(l-x) -I (3.3) 

is a dense conformal embedding of R 1'3, with the conformal factor 

~2(x) = 4 det-l(l-x 2) . (3.4) 

From the diffeomorphism (not group isomorphism) 

u(1) x su(2) ~ (z,( a 
b (za b 
d ))--~ zc d )e~ U(2) 

it follows that M=U(2), the minimal eonformal eompactifieation of the Minkowski space- 

1 3 
time,has the topology S xS . Being parallelizable with ~I(M) = Z2,M admits exactly 

two inequivalent spinor structures. They are given by the same (trivial) bundle 
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R L 
S = M x Pin(l,3) and two distinct morphisms q and q defined by 

R ¢b 
q Co Cu))  = o Rcu)  ( 3 . 5 a )  

and 
L,,o 

rl ( o ( u ) )  = o L ( u )  , ( 3 . 5 b )  

R % 
w h e r e  or(u) i s  some g l o b a l  s e c t i o n  o f  S.  The a u t o m o r p h i s m  B: S + S i n t e r t w i n i n g  n 

L 
and  q d o e s  n e t  e x i s t  b e c a u s e  t h e  f r a m e s  ~R(u)  and  e L ( u )  a r e  r e l a t e d  by  t h e  n o n t r i v i a l ,  

u-dependent SO(3)-rotation p(u) 

(am)R(u) = (~m)Lp(u) = (U+Dmu)L(u) . ( 3 . 6 )  

Note that the phase of u is annihilated in Eq. (3.6), Spin(3) = SU(2)~ SL(2,C)=Spin(l,3) 

and O o £ is a noncontraetible loop in S0(3), where Z: ~ + exp[T/2(DO+~3) ] generates 

~I(M). 
With respect to the global section ~ of S the Dirac spinor fields, related to 

4 
two spinor structures, are just ordinary functions from M to C . One Dan however per- 

form locally a SU(2)-gauge transformation h(u) = u det-~(u) which covers p(u) given 

by (3.6) and work with the same frame DR(U) in both cases. With respect to ~R(U) the 

second kind of spinors can be thought of as functions defined on the submanifold 

det(l+u) ~ 0 obeying antisymmetric boundary conditions along loops homotopie to £(~). 

Then, the local expressions for connections (and covariant derivatives) are equal 

qR r = (oh) qL £ (3.7) 

4 .  THE FORM OF TWO SPINOR STRUCTURES IN R 1'3 

In order to find how the two inequivalent spinor structures are manifested in 

R I'3 we apply the results of §2. 

Let F' = Rl'3x0(l,3) be the bundle of orthonormal frames in R I'3 trivialized 

by the Cartesian frame Z (x) given by (3.1). The obvious spinor structure in R I'3 is 

(S',q'), where S' = Rl'3xPin(l,3) is trivialized by ~ (x) and q':S' + F' is given by 

q'(~ (x)) = Z(x). For the Cayley map f (3.37 the morphism f is given by 

= ~ 2 
~(o~(x)) = det~(l-x2)[(l-x)-lam(l+x)-l]R det (l-x)[(l+x)-lqm(l-x)-l] L . 

Therefore the mocphisms ~ : S' + S, ~ :S' + S assume the form 
R L 

~R(~(x)) = ± ~R(U(X)) SR(X) ( 4 . 1 a )  
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and 

where 

}L(~(x)) = ± ~L(U(X))SL(X ) (4.1b) 

SR(X) = (l-x)-idet~(l-x) (4.2a) 

and 

SL(X) = (l+x)-idet~(l+x) (4.2b) 

are SL(2,C)-rotations. 

Now we characterize the two kinds of Dirac spinor fields in the language of 

R 1'3. The behaviour on paths mapped by f into loops homotopic to the generator of 

~I(M) is important. Since all such loops meet the surface det(l+u)=O we need a descrip- 

tion of its points in terms of objects in R 1'3. Consider the family of straight lines 

in R 1'3, passing through all points w e R 1'3 in all directions v ~ O. Any such a line 

Y = w+~v, ~ e R, asymptotically approaches in both directions the point u of the 
T W,V 

lim u(Y) = l, imu(Y ) = 

'light cone at infinity' 

I 
-i <v,v >~0 

if 
~,w>+~J~j)( <v,w >+iv°~ 1 ~,v>=0 

i i 0 0 
where <w,v> = w v - w v . Also any ue U(2), such that det(l+u) = O, can be obtained 

in this manner. Next, by inserting(4.1a,b)and(3.4)into (2.1) we obtain the local com- 

ponents of transformed spinor fields in R I'3 

,~(x) : ~3/2(xm-l(sR(x)) ,~(u(x)), 

= ~ (x)D (SL(X)) 9(u(x)) . 
9~(x) 3/2 -i 

The asymptotic overall fall off is 

~-' I<v,v>l-~/~ <v,v>~O 
lim 3/2(y ) = 

~+- T ¢2/4 ~--3/2(]vlZ+<V,W>2)'3/~ <V,v>=O 

The SL(2,C)-transformations (4.2a,b) asymptotically behave as 

{ ~<v,~-'/~ <v,v~¢O 
lim S (Y) = if • += R • (2~)-z/2 (l+w+Tv) (<v,w>+iv °) -i/2 <v,v>=O 

{ v<v,v>-I/2 <v,v>¢O 

"[+,~lim SL(Y ~ = (2"[)-* /2 (l+w+xv)(<v,w>+iv O) -1/ ,  i f  <v, v>:O 

(4.3a) 

(4.3b) 
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(v o i where v = ~ -v q.) and we choose a square root in a continuous way; the only am- 
o 1 

biguity corresponds to ± in (4.1a,b). The matrix elements of (4.3a,b) are frame depen- 

dent and divergent in general. However, in any frame there is a crucial distinction 

between spinor fields coming from different spin structures in M: 

I+l <v,v>¢O 

lim SR(Y x) SR(Y ) = lim SL(Y )SL(Y )x if 
T÷= - T÷= - -I <v,v>=O 

Therefore the arising two kinds of spinor fields in R I'3 are twisted in such a way that 

they become asymptotically antisymmetric with respect to one another in all isotropic 

directions and symmetric in all nonisotropio directions in R I'3. 

5. CONFORMAL TRANSFORMATIONS IN M 

1,3 
The local action in R of the connected component of the conformal group can 

be realized in terms of the four-fold covering group SU(2,2) = {T e GL(4,C), det T=I, 

+ 0 1 + 
THT = H}, where H=(i 0 )" With translation x ÷ x+t, t = -t; Lorentz rotation 

x ÷ p(S)x, S c SL(2,C) ; dilatation x + e 2k x, k e R and special conformal transformation 

-i 
x ÷ (x-k<x,x>)(l- <k,x> + <k,k><x,x>) 

there are associated the following SU(2,2)-matrices T 

k 
1 t S ~+~i), e O_k ) and 1 0 

(0 1 )' (0 ( (0 e (k 1 ) 

(a,b) is respectively. The action of T = c,d 

x + (ax+b)(cx+d) -I 

The corresponding action in M=U(2) is 

-i 
u ÷ (Au+B)(Cu+D) , 

where A = a+b+c+d, B = d-a+b-c, C = d-a-b+c and D = a-b-c+d. 

with a fixed spinor structure transform according to (2.5). 

transformations P,T and PT 

T -i -i 
P : x÷ x = a2x q2' T : x+ ~x = q2 ~ a2 ' PT : x ÷ -x, 

Spinor fields associated 

It is not so for discrete 

which generate discontinuous components of Conf(Rl'3). On M=U(2) they become 

T -I -I -i 
P : u ÷ a2u ~2 ' T : u + ~2 G o 2 , PT : u ÷ u 

Since P and PT interchange the global frames q and g on M, their lifts to the mor- 
L R 

phisms P and PT necessarily interchange the two inequivalent spinor structures on M. 

The time reversion T preserves both spinor structures. 
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6. SPECTRUM OF THE DIRAC OPERATOR ON M 

We first compute the spectrum of the Dirac operator H = inmnym(eL+FL)n n related 

to the spinor structure S,n L. The (constant) matrices Y = (0, am) obey 
m ~m ~ 0 

L 
{Ym'Tn }+ = qmn = diag (-,+,+,+) and r = (oL)~r (L) 

m m 

is the spinet connection on M obtained from the Levi-Civita connection F . The con- 

ditions to be tor~sion-free and to preserve the metric, i.e. [FL'ym n]-[FL'ym]=Y([°L'~L])n m n 

and F L is a linear combination of skew bilinears in y 's, uniquely determine F L • 
m m m 

F =0, J ~J ), j=i,2,3. It can be seen by analogy with the spin-orbit coupling 

in quantum mechanics that the possible spectrum of ~ is 

k -X[e (2~,+1) +Y2] , (6.1) 

where k g Z, 2Z E Z and Z > O, e = ±i for £ > ~ and E = +I for Z = O, and ~ = ±i is the 

chirality. The corresponding eigenfunctions 

• 1 

Sk.%eX(O,A) = elk¢'y'o(l+xY5) x ,~  D(~')(A)[ (~,p,~,~lg~,y2,~%+y2e.,p)(1)+(.%,p, y2,._y2]~,,ys,~,+~e,p) ( 0  1 1 )] ,  
P,q 0 1 p=-~ 

i¢ D(Z) where u = e A, (A) is the representation of A e SU(2) with spin £ and (I) denote 

the Clebseh-Gordan coefficients (degeneracy is partially labelled by the subscript q 

on the r.h.s.) are well defined on U(2) =(U(1)xSU(2))/Z 2 if: 

k is even and Z is integer, or, k is odd and Z is integer plus half. (6.2) 

The spectrum of ~ for the other spinor structure (S,nR) can be similarly obtained by 

R FR _FL using the vierbein ~ and = . The allowed values for k and ~ are exactly com- 
m m m 

plementary to (6.2) in (6.1). This could also be seen by adopting the alternative pic- 

ture c.f. §2. Then, ~ differ by sign at (¢,A) and (-¢,-A) (antisymmetric 

boundary conditions in M=U(2)). 

None of the eigenvalues (6.1) is zero, and the natural unitary representation 

of Conf {R 1'3) in the space of solutions of B~=O on M=U(2) is trivial. 
o 

7. CONCLUDING REMARKS 

The postulate of a global smooth action of the conformal group leads to a con- 

formal eompactification M of Minkowski space-time, or to its universal (open) covering. 

Assumed to be minimal, M can be interpreted in terms of asymptotic conditions for fields 
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in R 1'3 and can be used to study the conformally covariant Yang-Mills systems, also 

coupled to fermions [c.f. 22,23]. Being multiply connected, M admits two inequivalent 

spiner structures. They are both on the same footing and they are interchanged by 

parity and/or total reversions. To implement these fundamental reversions and to have 

standard properties of Dirac spinor fields one should consider both spinor structures 

at the same time and linearly combine the associated spinor fields. 

The two massless, free Dirac operators associated with two spinor structures 

on M are intertwined by P and PT. Both of them have no zero eigenvalues. To obtain a 

nontrivial unitary representation of the connected component of Conf(R I'3) in the space 

of solutions of ~$ =0 a possibility is to minimally couple spinors to an additional 

gauge potential on M. In the simplest U(1)-case a candidate is A=±(n+~)det-$(u)d(det(u)) 

for n e Z, where the zero eigenfunctions are of definite chirality (opposite for dif- 

ferent spinor structures). The work is in progress on replacing spinors in the external 

potential A by a coupled system with a true dynamical field undergoing also the con- 

formal transformations. In the framework of complex geometry and minimal eonformal eom- 

paetification M c of eomplexified Minkowski space-time it is natural to consider a 

SpinC=(~pinxU(1))/Z 2 structure. On M, the real slice of M c, there are also exactly two 

inequivalent Spin c structures, which are interchanged by P and PT [24]. 

To get solutions of ~ =0 on M (we do not consider coverings of M) another pos- 

sibility is to introduce the torsion in M. The 'parallelizing' torsion on M can be 

eliminated by allowing the conformal factor ~ to be complex and by properly rotating 

o 
vierbeins in M into the eomplexified directions of M [25]. The effects are equivalent 

to introducing the U(1)-gauge potential which couples to spinors by local phase rota- 

tions. 
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PURE SPINORS FOR CONFORMAL EXTENSIONS OF SPACE-TIME 

Paolo Budinich 
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Strada Costiera, Ii - 34014 Trieste - Italy 

i. Introduction 

E. Caftan [i] based his definition of "simple" spinors, later on named "pure", on 

2v-i 2v 
their equivalence with maximal null planes in euclidean complex spaces C and C 

This equivalence implies a bijective correspondence, named in a previous paper with 

A. Trautman [2] "the Cartan map", between pure spinor directions and maximal totally 

null planes. To the transitive action of Pin and Spin groups on pure spinors there 

corresponds the transitive action of the corresponding orthogonal groups on maximal 

totally null planes building up invariant manifolds (sometimes named quadric Gras- 

smannians diffeomorphic to coset spaces [3] ) laying on the projective null-quadric of 

the euclidean complex space. 

For 9> 4 pure spinor -directions build up invariant manifolds: non linear subsets 

(pure spinors-components are subject to quadratic constraints) in linear spinor-spaces, 

in bijective Cartan correspondence with invariant manifolds in euclidean spaces~ 

For 9~ 3 instead, pure spinors fill the whole spinor- space (no constraints)and 

spinor-directions are bijectively mapped on invariant manifolds on projective quadrics 

of the corresponding euclidean spaces. 

The Cartan conception of pure spinors assigns then to 2- and 4- component spinors 

( 9~ 3) the important and exceptional role of linearizing non linear projective ma- 

nifolds (quadric Grassmannians) of Complex 3-, 4-, 5-, and 6-dimensional complex 

euclidean spaces. Spinors of higher dimensional spaces (> 7) with 8, 16, ... compo- 

nents instead, if simple or pure, are fundamentally non linear in a similar way as 

the tensor-manifolds (quadric Grassmann~ns) Cartan-equivalent to their directions. 

Linearity in nature too seems to be the exception rather than the rule; and this 

suggests the conjecture that, if spinors play a fundamental role in the laws of ele- 

mentary phaenomena, they should be rather conceived as simple or pure spinors rather 

than vectors in linear spaces. 
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The study of pure spinors has been extended by C. Chevalley [4] to the equivalent 

case of real neutral spaces v,v-l, and R v'v (we indicate with ~P'q a pseudo-eucli- 

dean real space with p-space and q-time directions). 

Of physical interest are specially 2v-2,1 and 2v-l,l real spaces (for G.U.T.) 

and possibly also, and perhaps more naturally, v+l,v-2 and v+l,v-i real spaces, 

conformal extensions of 4,1 and of Minkowski spaces-time 3,1 (for v >3 and for 

v > 2 respectively). 

In this short note we will try to extend the concept and definitions of pure spinors 

to the latter real spaces, and to draw some consequences of possible physical inter- 

est. 

9+1, v-i ]Rv +i ,v -2 
2. Pure ]R -and -spinors 

v v ,v-i 
We recall that pure ]R v' and IR -spinors [4][5][8] admit a transitive action of 

Spin and Pin groups respectively and their directions are isomorphic to tensor-mani- 

folds (sets of totally null v-and (v-l)-planes) diffeomorphic to SO(9). And of their 

v-i v-i v 
2 components (2 -i for directions) only (2) are then independent (all of them 

for v < 3). 

v,v 
Restricting for the moment to , if GI,..G2v are the generators of the correspon- 

]R 9rv ding Clifford algebra Cl(v,v) = JR(2 ), a -spinor ~+ or ~ is pure iff 

~+ >< ~+ = r+]l''J~Gjl..jv½(l-+ F2v+l)ECl(v,v) -- JR(2 ~) (I) 

where r+ 31 "" ju are %he (real) ce~oonents of totally skew ]RV'Vv-tensors, r2v+l = GIG2~..G2u 

may be considered as representing a unit (space)-vector orthogonal to ]R v'v and 

S. 
Jl" " Ju 

define 

is the totally antisymmetrized product of GI, ,. ~ G 
J 

Furthermore we 

T 
<~ = ~ C 

where C is defined by: 

T 
C G. = (-i) G.C j = 1 .... 2u. 

] ] 

Eq.(1) implies the constraint equations, bilinear in pure spinor components (in number 

of i, i0, 66, for v = 4,5,6 respectively): 

< ~+ G (i + F2v÷l) ~+ > = O, for p < v (2) 
- el" °Jp 

and viceversa (2) implies (1). Both leave only (v) of the 2v-l-i spinor direction 
z 
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(*) 
components independent . Eq. (2) and then (i) are identically satisfied for 9 ~ 3. 

9,9-i 
The above may be extended to spinors ~ ; ~ is pure iff 

> < { = rJl''J(~-l)G j < 29-i (i') 
3!..J(~-i ) 

with the same meaning, mutatis mutandis (Spin being substituted by Pin group), as in 

~%~'9-case (CI(9,9-I) = ~(2~-i)~ ~(2v-l). Constraint equations are: 

< ~ G• ~ > = 0 for p <~ - i 
31"- Jp 

in the same number as in eq.(2). 

Let now ~ represent an ~+l'~-l-spinor and rl,r P represent the generators 
2"" 29 

of CI(9+1,9-I) Clifford algebras. 

Since 

9 
CI(9+1,9-I) = ~(2 ) = CI(9,9), (3) 

we may expect to be able to define (see ref.[6,8 ]for further possible definitions 

of ~+l'~-ipure spinors) ~+l,v-i ~,~ -pure spinor s ~ with the same properties as 

ones ~ ; that is, transitivity of both Spin and orthogonal groups; Cartan map; 

dependence on (2) parameters of both spinor directions and tensor-manifolds. The only 

substantial difference will be that while in the neutral case the elements of the 

V+l,9-1 
manifolds may be identified with totally null 9-planes, in ~ case they will 

only contain totally null (9-1)-planes (they are flags), with this aim in mind we will 

~+1,9-i 
then define a R -spinor as pure if it may be bijectively mapped to a correspon- 

ding ~u'U-pure spinor. 

We have then 

Theorem The R~+l'9-l-spinor ~ or ~ is pure if and only if 
- -  + -- _ 

~+ > < ~+ = r+31''J~F %(1 + F )~CI(~+1,9-I) JR(2 9 
- - 31" " J9 2~+i -~ ) (4) 

where r+31 "" 3~are the real components of an P~+l'~-l-semi U-vector. 

Proof We have (for~>2) 

(*) Eq.(1) and (2) imply the Cartan map : ~± may be multiplied by an arbitrary 

factor and then spinors are substituted by spinor directions; correspondingly, the 

space AV~p-vectors in~ ~, linear space of CI(~,~), is substituted by the correspon- 
ding projective space ~ ~V. 



208 

Cl(:v,v) = CI(2,2) @ m(2) ®..® m(2) 

(i) (v-2) 

correspondingly we may decompose the IRg'~spinor { in 

(5) 

@i @ ~2 O..8 #2(v_2 (6) 

where each ~ is a 4-component ~2'2-splnor, which, in turn, may be decomposed 
J + 

in the direct sum of two pure 2-components Weyl spinors # and 

+ 

Let g be the generator of CI(2,2)~IR(4) and let Y5 = glg2g3g4 represent a unit space 
± 2 

vector orthogonal to ~2'2(y 5 = i; {y5,y }+ = O)then for each ~j _ the Cartan map may be 

represented by 

± ± ± ~v 
# > < # = r v g ½(l±y 5) C CI(2,2) =m(4) (7) 

± R2,2. where r represent semi 2-vector (real) components in 
P~ 

Since Ci(2,2) = ~(4) = Ci(3,1) we may rearrange the Clifford algebra elements in (7) 

in such a way to obtain a Cartan map for R 3'I Weyl spinors # . In fact, a possible 

2 
easy choice is to interchange g2 and Y5 alone (g22 = -1 ;  Y5 = +1) and then  o b v i o u s l y  

{YI' ~' ~'Y4 } = {gl 'Y-' g3' g4 ] generate CI(3,1)=R(4) and y~ ~ ] 4 = g2" One obtains 
(,) 

then from (7) 

± ± ± 
> < ~ = f y~v ½(i± y5' ) (7') 

f 
where f now represent the components of the selfdual and antiselfdual e.m. tensor. 

Vw 

Y'5 = iY1Y2Y3Y4 r e p r e s e n t s  a space  u n i t  v e c t o r  o r t h o g o n a l  to  R 3 '1  (= ig  2 w i t h  t h e  

above choice). Obviously one may go back from (7') to (7):as an example taking as 
T 

imaginary unit Z = YiY2Y3Y4Y5 and then assuming g2 = ZY2 whichjwith the remaining 

generators of Cl(3,1);gives the generators of CI.(2.2). 

(*) One may also start from customary CI(3,1) generators Yi = °l ~ ° i' Y4 = i°281 
where o are Paul± matrices. Then CI(2,2) generators g are obtained by taking 

i 
Z = I ~ z ~ ~ ~ 4 ~ b ~ as imaginary unit and assuming gl = Yl =~ ~ ~ ; g- = Zy_ = ~ ~io_; 

~e~u~3s~tOl ~ ~; g4 = y4 = i ~2 ~ I with this choicey 5 = o3~ i. ~rom t~ese another 
of CI(3,1) real generators are obtained: 

Yl = glg4 = °3 ~ °l; Y2 = g3g4 = °3 8 °3; Y3 = g4Y5 = °l ~I; Y4 = g4 = i°2 @ i. 
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From (7') and the analogous of (5) 

CI(9+I, v-l) = CI(3,1) ® ~(2) ® ..~(2) 

(I) (~-2) 

9+l,v-i 
and we will have that the ~ spinor ~ splits in 

(5') 

= 41 @ 42 @--~ 42(v-2) 
(6') 

3,1 
each 4. being an 

] 

analogous of (2) 

spinor. But then if satisfies (i), ~ satisfies (4) and the 

< ~+ %1"'' %(1± r2v+l)~ ± > = 0 for p < v (2') 
- Jp 

by which the number of independent parameters o6 ~-dlrections will be (~). Furthermore 

the Spin group acts transitively on ~±- pure as the corresponding orthogonal group 

on the 9+1,9-i 9-tensor. 

Remark 1 The Theorem may be easily extended also for ~v+l,v-2 

be pure if and only if 

spinor ~ which will 

Jl''Jv_l 
>< ~ = Z r. j < 2v -i (8) 

]l-.](v_l ) T 

Jl..99-1 ). 
where the tensor components z may now be complex since Ci(v+i,9-2) = C(2 v-I 

Remark 2 It may be shown that the complex character of (8) may be completely assigned 

to the generators of the Clifford algebras (we need both F F .. F and 
1 2 2~-i 

F2v = GIG2"''G2~I in Cl(v÷l, 9-2); and their product gives an imaginary unit) in 

such a way that the tensor components in (8) may be taken real; they represent the 

direct sum of two ( ~l)-semi vectors plus their intersection, building up a flag 

(projective) isomorphic to the direction of ~ . 

3. Projective spinor-spaces and projective quadrics for v= 2,3. 

v, v 
Let us go back to ~ -pure spinors. The totally null planes Cartan-corresponding to 

2 2 2 2 2 
their direction lay on the projective quadric x = t (where x = x +.. + x and the 

1 

same for t 2) diffeomorphic, in general, to 

Sv_ I x Sv_ 1 

z 
2 

Two important concepts are then introduced by the Cartan-map that of projective geo- 

metry both in spinor and pseudoeuclidean spaces, and the compact, topologically non 
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trivial, feature of projective quadries where the manifolds diffeomorphic to spinor 

directions lay. Due to the substantial equivalence of neutral spaces-spinors with 

those of the corresponding conformal extensions of space-time, implicit in the equa- 

lities Cl(9, v)=JR(2 ~) ~-CI(~+I,~-I), the same feature implied by the Cartan map will 

v+l,v-i 
be relevant for space-time and its conformal extensions ]R , for which the pro- 

2 2 
jective x = t quadric will be, in general, diffeomorphic to{containing the null 

component of the manifold): 

S x S 
2 2 v v - 2  

x = t -~ 
Z 

2 

(They may however present topological features different from the neutral case above). 

We wish to stress here that these properties of projective geometry and compactness 

are characteristic of the Cartan map even before the non linear properties of the set 

of pure spinors matters (at 9 >4). Therefore, in order to examine their relevance, we may , taking 

advantage of the equalities (5) and (5'), recall the elementary case of IR 2'2 for which 

the maximal quadric Grassmannian is [3] 

~(+)(m2,2) = SO(2) ® SO(2) = SO(2) (9) 

2 SO(2) 

and compare it with the equivalent familiar case of two component Weyl spinors in 3,1. 

With obvious notations, we find from (7') 

± ± ± j 
~) > <~ = ~3hf ± ~3E = (iH + E ) ~J = z 

jk 3 3 3 J 

_+  u e scr  ts) o  :o or, (dropping for economy 

2 

~o ~I - ~o 

2 

#i - #o~i 

z z - iz 
3 1 2 

= 

z 1 + i z  2 z 3 

(10) 

J 
where o are Pauli matrices and we have adopted the pseudoscalar Z 3 = oi~2o 3 as 

+ + 
imaginary unit i(H is an axial ~3-vector), by which @ ><9 element of CI(3,1) is 

identified as element I~ ) +(~)) (first equality) of CI(3,O) and then of CI(C 3) 

- -+ 2 
(z = - z ). In this last context the isotropy z = O is expressed by the equation 

J 
characterizing e.m. plane waves (Z ± = iH ± E): 

2 2 
E - H = O = E - H (ii) 

The ]R 3'I isotropic fourvector laying on the ]R3'iprojective null quadric may be easily 
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obtained as bilinear ~+,~--component polynomia (intersection of the manifolds corres- 
+ 

ponding to ~ and @-); to this end it is enough to take eq.(8) with ~=31which contains 
(*) 

then a term K yp¥5 (with the property K~f ± = O) such that 

+ 

2 2 
and satisfying the isotropy condition K K = K K = O. We have indicated with 

o 

and " % the two non zero components of #+ and ~- respectively. K components are 

generally complex; real ones may be obtained by substituting % with its conjugate 

¢c= -io 2% and we obtain K = X real given by 

{K ,K } { < %c ~ > < %c~ > } { X,Y,Z,T } = (~ ; = = 
1 o 1 

12 2 + [%112) } -1%lL + %%1 i(%1%- (1% L2 

(12 )  

3,1 
which may be taken to represent a ~ light-vector. The corresponding projective 

2 2 2 2 
quadric : X + Y + Z = T may be represented by 

2 2 2 
X + X + X = 1 
1 2 2 

*° I I f  we c o n s i d e r  t h e  l R 3 ' l - s p i n o r  ~ = %1 we may c h o o s e  a p a r t i c u l a r  a f f i n e  c h a r t  t o  
(**) 

represent its direction:Z = %1 / %o " The Cartan map may be then obtained byconsidering 

Z as complex coordinates of the Argand plane, on which the Riemann sphere 

S is stereographieally projected. We have Z = p e and then locally 
2 

up to a factor p , %1/%o represents an element of SO(2) as foreseen from (9) from 

which we also see that S0(2) is also a stability group of spinor ~-direction. This 

can also be seen directly by considering the standard spinor ~st = Io and a sta- 

bility group is represented by S0(2) rotations of S 2 (about the z-axisi leaving the 

North Pole N fixed. S 2 above represents the conformal compactification of Argand plane, 

to which then the line at infinity{~} (point) must be added(corresponding to N),where 

spinor directions are represented. To S0(3,1) transformations in ]R 3'I there correspond 

SL(2,,~)spinor transformations and, due to the conformal nature of the stereo- 

graphic projection, holomorphic mappings (i.e. complex-analytic) of z in the plane. 

(*) K~,+fu9 build up then a flag Cartan-equivalent to the 4,1, 4-component spinor 

~= ~ • ~ . 

(**) The Cart an-map may be also obtained directly from (i0) and (ii) precisely E2=I=H 2. 

In the text we show instead the possible connection with the already classical way of 

introducing space-time spinors by R. Penrose [7]. 
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These may form a subgroup in an infinite dimensional Lie group. An exhaustive presen- 

tation of all this may be found in Vol. I of ref. [7 ]. 

2,2 ± 
Let us now consider the -spinor # . We may reapeat the same procedure as before 

and obtain from (7) 

+ ± jk ± ' j ± j 
#->< ~ = ~ r ± ~JE = (H.± E ) = D. T (10 ~) 

jk 3 J J J 

or (we drop for economy the ± superscript). 

2 %% - % 

~2 

1 ~o ~i 

D 3 D 1 - D 2 

D 1 + D 2 - D 3 

where we have adopted 

2 
equation of isotropy Z 

1 1 2 2 3 3 
r = o ; $ = -i ~ , • = ~ ; and now we obtain instead of one 

+ 
= O (and its complex conjugate) two independent ones for D 

and D ; each of the form 

2 2 2 
+ D = O; D1 - D2 3 

(they are equivalent to (ll) however with metric gjk = (ll, -1, +i). 

For projective coordinates they correspond to a torus (take the affine chart (D2)2 = i). 
+ + - + - 

But we may also again compute K = < ~ g y ~-> now real = { (~o ~o - ~i~i )' - 
+ 5 + + + - _ _ 

- (~o ~-o + #i ~i)' - (~ ~o + ~o ~i )' (~o ~i - ~i ~o )} satisfying 

2 2 2 2 
K - K + K - K = O 
1 2 3 4 

~2 2 1 = k 2 + k 2 
and the projective quadric may then be identified with a torus i + k3 = 2 4 

We could now repeat the procedure as in the previous case, the torus substituting the 

Riemann sphere, and, due to the conformal properties of stereographic projection SO(2,2) 

will reduce to the conformal group in compactified ]R I'I. 

~et us adopt an isotropic basis 

8 = ½(gl + g2 ); ~i = ½(gl - g2 ) 1 

82 = ½(g3 + g4 ); ~2 = ½(g3 - g4 ) 

{e ,8 } = o = {~i'nj}+ ; {Si'nj }+= 6ij i j + 
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11 
then the standard spinor Cst = [0 '  may be represented by the ndnimal left CI(2,2) ideal0201 

(image of the corresponding maximal isotropic plane in CI(2,2)); and the action of the 

spin group is 

± ± ± + + 

exp [e 020 1 + 8 q2ql + Y ] 82e 1 = e~-(l+8-q2nl ) 020 1 

± ± 
It is seen that if we wish to generate real spinors y , 6 

ponding chart ¢i / % will be real 

are real and in the corres- 

± ± ± 

¢I / ¢o = B 

we have the dependence of spinor direction on two real independent numbers, which may 

be represented by hyperbolic functions corresponding to the fact that in this case 

± x± 
the group is not SO(2) but SO(I,1). SO(I,1) plus dilatations (2 ~el, e ) is also, 

(*) 
locally, a stability group of Cst = e2el" Globally instead it will be the con- 

formal group in Rl'l.Also in this case we will have SL(2,R)corresponding to SO(2,2) 

and after stereographic projection from the torus to the plane to two independent Lie 

groups of transofrmations instead of one complex analytic (and its complex conjugate) 

apt ot be embedded in an infinite Lie group. It appears that the compact SO(2) belongs 

to complex spinors; while non compact SO(I,1) to real ones, both appearing as stabili- 

ty groups and as group diffeormorphic to spinor directions in 3,1 and ~2'2spinors(**) 

The above may also be applied to a 4-component 3,2 spinor direction (fn a particular 

affine chart) 

1 

r 
1 

= r2 

r 3 

g e n e r a t e d  by the  a c t i o n  on the  s t a n d a r d  s p i n o r  0 0 
2 1 

[i + rlqlq2] [I + r 2 q2 ½(I+Y5)] l+r3nl½(l+Y5)] 8281 

the stability group of e2e I is the six parameter groups with generators: 

(*) In both cases to ~H = I~l there corresponds the E 2 - H2 = 0 where {El, E2, E3} = 

= {½,O,O }; {HI, H2, ~t} {O, -½, O }. 

(**) See note on page 4 ; taking the real generators y of CI(3,1) we could generate 

real spinors. 
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e ¥ [I- a I 02{)1] [l+a 2 ¥5ei ] [i+a3~582 ] [l+a4½(l-Y 5) n I] 

[l+a5½(l--f5)n2] 0 e = e (9 
2 2 1 

4. The general case. Outlook. 

v+l,v-i 
For conformal extension of spce-time ~ spinor directions are diffeomorphic 

(if pure for v >4) to Grassmannians whose quadric part lay in compact projective 

quadrics of the general form 

Q~+I, v-i 

S x S 
9-2 

Z 
2 

which contains the conformal compactification of the lower dimensional v, v-2; 

~r ~-2 
precisely Q consists of ~ , plus its light-cone at infinity plus its 

~+l,v-i 

(2v-4)dimensional projective light-cone. This in turn contains the conformal compacti- 

~-1,9-3 
fication of ~ and so on, and the essential appearance of only light-cones is 

justified the conformal embeddings implementing massless physical systems. 

One may envisage in this "onion" structure of light-cones each embedded in a higher 

dimensional one a possible instrument of dimensional reduction. But perhaps the most 

interesting feature that results from this analysis is the possibility that projective 

spinor spaces and (forV~4) pure spinor sets are diffeomorphic, if real, to compact 

projective manifolds in corresponding pseudoeuclidean spaces building up coset spaces 

possibly diffeomorphic to Lie groups of physical interest. This fact and the observa- 

tion that for real (Majorana) spinors the stability groups seem to have the feature 

of conformal groups in i,i may suggest a natural origin of the role of this group 

in physics. 

Another consequence of the adoption of the Caftan map is that the non-trivial topolo- 

gical structure of compact manifolds diffeomorphic to projective spinor manifolds 

may induce to take those manifolds rather than the pseudoeuclidean spaces as the 

basis of spinor structures. This, considering also the projective features of these 

spaces, could have far reaching consequences in corresponding field theories, and : 

could induce to take seriously the existence of more non-equivalent spinor structures 

in topologically non-trivial manifolds which seem naturally to arise from the conformal 

extension of space-time. 

These problems, the problem of internal symmetry, its compactness and its breaking, 
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naturally arising from simplicity or purity, will be the object of further studies. 
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Introduction: 

In 1904 A.C. Dixon published a paper [7] in which a study was made of a 

differential equation, which today would be recognised as the time independent, 

massless Dirac equation. The equation is viewed in [7] as a natural 

~eneralization of the classical Cauchy-Riemann equations, and the function 

theoretic properties of its solutions are studied, via a generalized Cauchy 

integral formula. During the 1930's Fueter published a number of papers 

(e.g. [8,9]) in which the quaternion algebra is used to study an analogue 

of this equation over R ~. More recently Delanghe [5], Iftimie [12], 

Delanghe - Brackx [6], Brackx - Delanghe - Sommen [3], amongst others, have 

used real Clifford algebras to study properties of solutions to a homogeneous 

Dirac equation defined over R n. This analysis is referred to as Clifford 

analysis [3]. Applications of this analysis, within mathematical physics, 

have been developed by a number of authors (e.g. [4,10,13,21]). In 

particular, in [13] Imaeda, while investigating Maxwell's equations, extends 

Fueter's quaternionic analysis to £4(~¢(2) - the algebra of 2 x 2 complex 

matrices). 

In a series of recent papers (e.g. [18,19,20]) the author has used 

results, and ideas developed in [13], together with complex Clifford algebras, 

to develop a function theory for solutions to a Dirac equation defined over 

C~ where n is even. In this paper we restrict this holomorphic function 

theory to a special domain in cn. This domain is called the Lie ball [14], 

and it is Cartan's classical domain of type 4 (see [ii]). We use a Runic 

approximation theorem to construct a holomorphic function which satisfies the 
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equation introduced here, and is defined on the Lie ball, but which cannot 

be extended holomorphically beyond any point of its boundary. In a later 

work we shall use the methods employed here to obtain similar results for 

more general classes of domains than those considered here. In conclusion, 

we use the generalized Cauchy integral formula employed here to construct 

non-analytic continuous extensions to bounded holomorphic solutions to the 

Dirac equation, on the Lie ball. We characterize these continuous functions 

by means of integrals over real (n - 2) 

dimensional submanifolds, with boundary, of a null cone in ~n. These 

integrals are closely related to the integral representations of solutions 

to the wave equation in space-tlme of even dimensions given by Ries~ in [17], 

and to the formulae described by Penrose in [15]. 

Preliminaries : 

In this section we develop the necessary algebraic and analytic background 

required for the rest of the paper. 

In [2] and [16, chapter 13] it is shown that from the space R n, with 

orthonormal basis {e. }n i it is possible to construct a 2 n dimensional, 
J 3 = 

associative algebra An, with identity I and with R n , ~ A. Moreover the 

elements {ej}nj=l satisfy the relation eie j + eje i = 28ij , where ~11"" is the 

Kroneker delta. This algebra is an example of a real Clifford algebra. 

By taking the tensor product of this algebra with the complex numbers we 

obtain the 2 n dimensional complex Clifford algebra, An(~ ) . The complex 

}n is identified with ~n by the mapping subspace spanned by the vectors {ej 
j=1 

eo ~+ (0,...,O,I,0,...,0), where the unit appears in the jth place. A vector 
J 

zlel+...+Znen in ~n is denoted by ~. 

denoted by N(~), and for each point ~i 

is denoted by N(~I). 

_ C n z 2 O} is The null cone {z c : _ = 

_ ~n )2 = ~n, the null cone {z ~ : (~-~I O} 

Suppose that Dn(R) is the disc, of radius R, lying in R n, and centred 

at the origin, then we denote the component of ~X, where X = U 
~ aDn (R) N(~)' 
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containing the interior of Dn(R) by ~n(R). It may be deduced that 

~n(R) {z e gn 14 .+z~ 2)~ = _ :ll~II 2+ (~I~I -Iz~ +.. ' < R2} , 

where II~II is the Euclidean norm on cn The domain~n(R) is called a 

Lie ball, [14]. 

Definition I: Suppose that U is a domain in cn, and that f : U + A (¢) is 
n 

a holomorphic function, which satisfies the equation 

u 
ej 8f ~-~ (~) = o (i) 

j=1 

for each z ~ U. Then f(~) is called a left regular function [18]. 

A similar definition may be given for right regular functions. Equation (i) 

may be seen to be a generalization of the Dirac equation studied in [3] and 

elsewhere. 

From now on we shall assume that the integer n is even. As a special 

case of a theorem given in [18] we have: 

Theorem i: Suppose that f : ~n(R) ÷ An(g) is a left regular function then for 

each r with O < r < R, and each z ~ ~n(r) we have 
--o 

= I [ G(z-z )Dzf(z), 
w _ 

~D n (r) 

where w 
n 

and 
n 

Dz = ~ ej(-l)JdzlA...Adzj_iAdzj+iA...AdZn • 
j = l  

From [20] we have the following Runge approximation theorem: 
Theorem 2: Suppose that V is a contractable subdomain of D-(r) and that U(V) 

is the component of c n - Y ,  where Y = U .__N(z), c o n t a i n i n g  V. Suppose a l s o  
zE~V 

that f : U(V) ÷ An(g) is a bounded left regular function. Then, for each 

R > r, and each e > O, there is a left regular function 

-n 
is the surface area of the unit sphere in R n, G(~-~o) = (~-Z_o){!-~o} 

g~,R : ~n(R) ÷ An(C) 
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such that 

sup IIge,R(~) - f(~)ll < ~ , 
z ~u(v) 

where II II denotes the Euclidean norm on An(C). 

Left Regular Functions on ~n(R): 

Definition 2: We denote the right An(¢) module of left regular functions 

defined over the Lie ball of radius R, by ~(~n(R),An(¢)). 

Theorem 3: For each real, positive number R, there exists a function 

f e ~(Bn(R),An(C)) which may not be holomorphically continued beyond any point 

of the boundary of ~n(R). 

Proof: Suppose that the sequence {z }.~ is a dense subset of ~Dn(R). Then, 
--O l=O 

for each R 1 > R there is a sequence {V.} m j j=l where each V.j is a subdomain of 

Dn(RI ) with the following properties: 

I. each domain V. is contractable to a point, within R n 
J 

2. there is a disc Dn(rj) contained in V.3 where rj < r j +  1 < R, and 

l i m r .  = R  
j - ~  J 

3. each V. con ta ins  the p o i n t s  X , . . . , x , _ l  in i t s  i n t e r i o r ,  but  i t  does not  
J 

c o n t a i n  the p o i n t  x. --j 

and j 
4. for j the open set 

within R n . 

N V. is connected, and contractable to a point, 
i=l j 

The domains {Vj} may be constructed by considering suitable homotopy retracts 

on R n" of the domain D (RI) within 

Now consider the function 

co 

f(z__) = G(z-x o) + ~ G(z-xj) - gj(z__) , 
j=l 

where ~ • ~n(R), and gj :~n(R I) ÷ An($) is a left regular function, such that 

sup lIG(~-xj)-gj(z)ll -<! 
z~U(Vj) - j2 
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for some ~ > O. It now follows from property 4 of the sets V. that for each 
J 

k ~ I and for each ~ e N(~k) n ~n(R) U (N(~j) n ~n(R))), where ~Bn(R)) 
j#k 

denotes the closure of the set ~n(R), there is a continuous function 

z : (o ,1)  ÷ t~(v k) o Fn(R) 

such that lim lz(b) = _z, and the function fk(~ ') = f(z')_ - G(z'_ -~k ) is 
t+l -- 

bounded on the set X ((0,i)). 
Z 

C o n s e q u e n t l y ,  t h e  l i m i t  as  t t e n d s  t o  1 o f  f (X ( t ) )  i s  n o t  f i n i t e .  
Z 

Moreover, i t  i s  s t r a i g h t f o r w a r d  t o  deduce  t h a t  t h e  s e t  o f  a l l  s u c h  z ' s  i s  

dense in ~ (~n(R)). The result follows. 

We now proceed to consider boundary problems associated to left regular 

functions defined on closed neighbourhoods of the Lie ball, ~n(R). 

Theorem 4: Suppose that U ~¢n is a domain containing ~n(R) and g: U ÷ A(C) 

is a left regular function. Then there exists a continuous function 

Fg : Cnk(~Dn(R) U Y) + A(¢) 

where Y = {z_¢N(x i)_ N N(~j) for some --ix'' --Jx" e ~Dn(R)}, such that 

i rg ~(R) = g 

and 

ii F (z) = 0 g - 

for each ~ with N(~) n~n(R) = ~. 

Proof: Suppose that -oZ ~ Cn/R n and N(~o) n Dn(R) # ~, N(z o) n ~Dn(R) $ ~ then 

it may be deduced that the set X(~o) = N(z_o) N Dn(R) is a (n- 2) dimensional 

manifold, with boundary, and that this manifold is a submanifold of an (n- 2) 

dimensional sphere. 

If K(~o,e) , ~ ~Dn(R), is a closed neighbourh0od of X(~o) n ~Dn(R) of 

R + volume ~, for some suitable ¢ £ , and such that ~K(~o,e) is homeomorphic 

to S'x X(~o) , then we have from Stokes' theorem that 
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1 f _ i [ 
~- j G(~- ~-o)Dzg(z) w J G (~- ~-o) D~g (~) ' 

n n 

3Dn(R) K(Z_o, ~ ) U T(~o,e ) 
where T(~o,e) is an (n- i) dimensional submanifold of ~n(R), with boundary, 

and satisfying the conditions: 

i ~T (~o,e) = 3K(~o, E) 

2 T(~o,g ) N X(~o) = 

and 

3 T(~o,S) is an S 1 fibration of an (n- 2) dimensional submanifold, K'(~o,s ) of 

K(z ,e). 
-'O 

Moreover, we have that for each point ~ e K'(~o,g) the fibre S I lies in the 

plane Passing through _x, and spanned by the vectors _x-Re -oZ and i Im~o , where 

Re z = Xlel+...+x e 
- -  nn 

Im ~ = iYlel+...+iYne n 

with ~o = (Xl +iyl)el+'''+(xn + iYn)en" 

We may now introduce the following homotopy: 

H: T(Z_o '~) x [O,i] ÷~n(R) :H(x+rcos_ 0(x-Re_ ~o)+irsinelm~o,t) 

)~ ~ + Im ~e(~) " = x+ r{cose(x- Re~o (x) cos Tt ~o _ _ sln2--t+ilmz sin e} , 
-- --O 

where r is the radius of the fibre S I, e is a parameterization of this circle, 

t E [O,I], and ~c : Rn ÷ R is a C ~ function with compact support Dn(R- s), and 

~g Dn(R- 2~) = i . 

As H(T~o,~),[O,I]) N N(~o) = ¢ we have from Stokes' theorem that 

i I G(Z_~o)Dzg(z ) _ I ~[ G(Z_~o)Dzg(z ) 
W -- -- -- W | " 
n n 
K(~o,e) UT(~o,E) K(~o,g ) U H(T(Z_o,S ) ,11 

We now have 
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I G(~_~o)D~g(z ) I j Z n n 
W-n = W--n L(I] Yll ~-=~) 2 <II Yll ~-=~) ~ Dzg(z), 

H(X'(~o,¢),l H(T'(~o,C),l) 

where T'(~o,E ) is the restriction of T(Zo,¢ ) to the fibering of Dn(R-2S)NK(Zo ), 

Z : x__-Re ~ o, ~: Im~ o (II i Im ~olI )-I and z = (-I + cos 9 + i sin e) II i Imeoll . 

On placing k = n/2 we now have from the residue theorem of one variable 

complex analysis [I] that the right hand side of equation (2) evaluates to 

Wn p=o 

Dn(R-2g) NK (~o) 

[ 1 I k {y Res -- - ~ Res -- n(x)dK(~o) 
(2][ y[[ ) _zlP ) [zlP-I ' 

where z.,ilm .x+z Im  enotes the residue of 

[Zl ) 
([[ YI] +z) p-k g(z)zlP, n(x) is a unit vector in R n normal to the surface K(~o) at x, 

and orthogonal to the real vector i Im z , also dK(~o) is the Lebesgue measure on 
--O 

the (n-2) dimensional manifold K(Zo). 

It may now be deduced that 

(2) 

f 
I I G (z__-Zo) Dzg (z) 2~i lim ~-- = W 

S->o n j n 

K(~o,S) U T(Zo,~) 

It may be observed that for each sequence 

E ~n\Rn we have that 

{~i}~=| ~n\Rn, with limit 

lim K(zi ) = K(z). 
i-~o 

Consequently we have that the function 

rg : ~nN(RnUy) ÷ An(~) 

Wn p=o PJ(2I[ Y[] ) k y Res I zlp J 

K(z o) 

is a continous function. 

On placing Fg(X_) = O for each x E Rn\Dn(R) and rg(X) = g(x) for each 

x E ~n(R) we may continuously extend the function F to ~nk(~Dn(R) UY). g 

zlP-I J fn(x)dK (-~o) 
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In the cases where z e ~n(R)/~n(R) the residue integrals given in the 
--O 

proof of theorem 4 correspond to integrals for left regular functions given 

in [4], [13], and [21]. 
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§0. INTRODUCTION 

Ever since the discovery of conformal invariance of Maxwell's equations, 

conformal groups and conformal structures have had an important role in mathematical 

physics. For the most part,  th is  role has been confined to consequences of the 

geometric action of the conformal group and to the use of certain un i tary  represen- 

ta t ions.  Now there is a f a i r l y  e x p l i c i t  theory of harmonic analysis on the conformal 

group. I t  seems l i k e l y  that th is  theory w i l l  be of some physical importance, e.g. in 

par t ia l  wave analysis.  

When a group G acts by geometric symmetries on a space X, i t  also acts on 

various spaces of functions on X. These functions are better understood by taking 

the symmetries into account. That i s ,  of course, the basic idea in Fourier analysis.  

I t  has also been exploi ted in the use of spherical harmonics, where G=SO(3) and 

X=S 2, and in the appl icat ion of other sorts of special funct ions. 

Now the machinery is avai lable for the case where G is the conformal group or 

one of i t s  coverings, and X is e i ther  the space G i t s e l f  or is a symmetric homogen- 

eous space of G. 

In th is  a r t i c l e  we describe some of those developments, f i r s t  sketching the 

general theory and then describing the case of the simply connected covering group 

S'U(2,2) of the conformal group. 

*Research p a r t i a l l y  supported by National Science Foundation grant DMS-84-01374. 
tResearch p a r t i a l l y  supported by National Science Foundation grant DMS-85-13467. 
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§I. Tempered Representations of ~emisimple Groups 

§2. Tempered Representations of SU(2,2) 

§3. Plancherel Theorem for  Semisimple Groups 

§4. E x p l i c i t  Plancherel Theorem for S'U(2,2) 

We assume that the reader is well acquainted with Mackey theory but not so well 

acquainted with Harish-Chandra theory. 

The resul ts  in §§I and 2 have been known for some time. The Plancherel formula 

in §3 was worked out by Harish-Chandra in the 1960's (published somewhat la te r  in 

[ I ] ,  [2] and [3 ] )  for semisimple groups with f i n i t e  center. We recent ly developed 

another approach ( [ 4 ] , [ 5 ] )  which allows i n f i n i t e  center, as in the group ~ ( 2 , 2 ) .  

In §4 we work out the constants to obtain an e x p l i c i t  formula for  ~U(2,2). 

§I.  TEMPERED REPRESENTATIONS OF SEMISIMPLE GROUPS 

We describe the representations involved in the Plancherel formula for a semi- 

simple group. To do th is  for  a class of semisimple groups, one must ensure that 

cer ta in  subgroups belong to the same class. Our class consists of the reductive Lie 

groups G that have a closed normal abelian subgroup Z such that 

(l . l )  

and 

(I .2) 

Z centra l izes the i den t i t y  component G o and G/ZG ° is f i n i t e  

I f  x E G then Ad(x) is an inner automorphism of g~ . 

Here "reduct ive" means that the Lie algebra B of G is (commutative)~(semisimple). 

I f  ~ E G, the set of equivalence classes of i r reduc ib le  un i ta ry  representations 

of G, then ~ has three types of characters. The central character ~ is the scalar 

valued funct ion on the center Z G that  is given by ~(z) = ~ ( z ) . l  where I is the 

i den t i t y  on the representation space Jf(~).  The inf initesimal character ×~ is the 

map on the center 3(g) of the enveloping algebra ~(g) given by d~(D) : ×~(D).I 

for  every Casimir operator D. We view i t  as a homomorphism ~(g)--->~ of associa- 

t i ve  algebras. The character or distribution character 0(~) is the Schwartz 

d i s t r i bu t i on  on G given by 

co 

(1.3) E)(~:f) = trace ~( f )  for  f E Cc(G ) 

where ~ ( f )  = ~ f ( x ) z ( x ) d x .  The equivalence class of ~ is speci f ied by e(~). 

The d i f f e ren t i a l  equations 

(1.4) De(~) = × ( D ) - e ( ~ )  for D e 3(~) 
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lead to the information that  e(~) is in tegra t ion  against a l o c a l l y  L z funct ion 

T(~), 

(1.5) ~ ( ~ : f )  = IGT(~:x) f (x )dx  g 

which is real ana ly t i c  on a cer ta in  dense open subset ( " regu lar  set" )  G' in G. 

We may suppose Z n G o = ZG0. Then ~ c G belongs to the r e l a t i v e  d iscre te  

ser ies i f  i t s  coe f f i c ien ts  

(1.6) @u,v(X) = <u, ~(x)v) j / (~)  , u,v E ~ ( ~ )  , 

are L 2 modulo Z. The representat ions we w i l l  use w i l l  be constructed from r e l a t i v e  

d iscrete ser ies representat ions.  

Choose a Cartan invo lu t ion  e of G. In other words, e is an automorphism of 

G, 8 2 = I ,  e is the i den t i t y  on ZG(G°), and the f ixed point  set K of  B s a t i s f i e s :  

K/ZG(G°) is a maximal compact subgroup of G/ZG(G°). 

Let h be a Cartan subalgebra of B, i . e .  a maximal d iagonal izable (over C) 

subalgebra. Then H = {x E G: Ad(x)~ = ~ for  a l l  ~ E h} is the corresponding 

Cartan subgroup. One can f ind x E G o such that  Ad(x)h and xHx - I  are e-s tab le .  

I f  G has r e l a t i v e  d iscrete ser ies representat ions,  then K contains a Cartan 

subgroup of  G. Conversely, l e t  T c K be a Cartan subgroup of  G, ~ i t s  Lie 

algebra, and ~+ = @+(~,t) a system of positive roots. Let p : ½~@+a and set 

I 
<~,~> ~ 0 for al l  ~ E @ + and 

(I.7) A' = ~ E i~*: e ~-p is well defined on T o . 

I f  ~ e A' then there is a relative discrete series representation ~# of G o 

such that 

(1.8) T(~T~: X) = (constant)A(x) -~ ~]  det(w) eW~(x) 
w W e 

where x E T O n G' A(x) = -IF (e ~ / 2 - e - ~ / 2 ) ( x ) ,  and W ° is the Weyl group of  (G o ,TO). 
, ~,@+ 

The central  character of ~ is eh-PlzGo. I f  X E ZG(G°)^ agrees with ~T~ on ZGO, 

then 

(1.9) X ® ~ ~ (G~) ̂  , G t = ZG(G°)G° 

is well defined and is a relative discrete series representation of G t .  

the relative discrete series of G consists of the 

Finally, 

o ZG(G0)̂  = indG.(x ® ~>) , ~E A' , XE (I .I0) ~X,}, {~- 
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where ~ and X agree on ZG0. 

Now l e t  H be any e-stable Cartan subgroup of G. Then h = t H ~ a H, ±I eigen- 

spaces of elh, and H = T H×A H where T H = HnK and A H = exPG(aH). Then the 

centra l izer  ZG(AH) = M HxA H where eM H=M H and T H is a Cartan subgroup of M H. 

Let @+aH = @+(g,a H) be a system of posi t ive a--roots,  n-= ~ g , N- the corre- 
H H ~@~+ ~ H 

sponding analyt ic  subgroup of G, and PH =MHAHNH the associate~aH"cuspidal parabolic" 
r 0 subgroup of G. I f  w c AMH , qw is the corresponding re la t i ve  discrete series 

• 0 0 
representatlon of M H, and for X E ZMH(M~)^ consistent with h~ then 

qX, ~ = IndM~(x ® q~) is the corresponding re la t i ve  discrete series representation 
M H 

of M H. I f  aE a~ now n×,w ® e i~ E (MHAH)^ extends to PH' t r i v i a l  on N H, and we 

have the unitary representation 

( I . I I )  ~×,w,~ = Ind~H(q×, v ® e i~) 

+ 
I t  does not depend on choice of @aH. The representations ( I . I I )  of G const i tute 

the H-series. I f  A H = { I }  that is the relative discrete series. I f  A H is maximal 

i t  is the principal series. Given v and X, ~X,~,a is i r reducib le for almost a l l  ~. 

The i r reducib le constituents of representations ~X,v,o' H var iable,  are the tempered 
representations of G. 

When we are dealing with several Cartan subgroups we w i l l  wr i te 

(l .12a) 

(l .12b) 

(l .12c) 

~(H: ×:w: ~) for the H-series representation ~X,w,a ' 

O(H:X:w: ~) for the distribution character of ~X,v,~ ' and 

e(H :X :v :~ :  f) for the trace of ~×,v,~(f), f e C~(G) . 

§2. TEMPERED REPRESENTATIONS OF SU(2,2) 

The conformal group is usually realized as the identity component S0(2,4) of 

the orthogonal group of the real bil inear form -xly I - x2y 2 + x3y 3 + . . .  +x6y 6 on 
~2,4. The space of l igh t - l i ke  lines in ~2,4 is the conformal completion of 

Minkowsky space ~1,3, and that gives the action of S0(2,4) there. We wi l l  find i t  

much more convenient to use the complex form 

(2.1) SU(2,2) = {x E GL(4; C): xJx*=J and det x = l }  

of the double cover of S0(2,4), 

two to one correspondence is 

-I -I ) 
J = 1 1 ' for the linear group. The 
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(2.2) SU(2,2) --> S0(2,4) by A2(vector representation) 

antisymmetrization of the usual representation of SU(2,2) on C 4, 

Write G for the universal covering group SU(2,2) of SU(2,2), 4: G--> SU(2,2) 

for the covering, and Z I =Ker(~). Since SU(2,2) has center of order 4, Z I has 

index 4 in Z=Z G. 
0 The maximal compactly embedded subgroup K=[K,K]×Z K where [ K , K ] -  SU(2)×SU(2) 

0 maps one-to-one to SU(2,2), and where Z K - IR. Let t denote the compactly embedded 

Cartan subalgebra of B given by 

(2.3) ~ : {d iag( i81, i62, i83, i84) :  8j real,  ~8j=O} 

Then ~ : (~n [k , k ] )  • ~K with 

(2.4) 
t n [ k , k ]  : {d iag( i81,- i01, i82, - i82) :  8j real} 

~K = {d iag ( iB , ie , - i e , - i e ) :  8 real} 

This gives us a parameterization of the corresponding Cartan subgroup T of G: 

(2.5a) T = {t(O1,02)Zu: 0 <81<2~, 0__<02<2~, -~<u<~ }  

where 

(2.5b) t(81,82) = exPG d iag( ie l , - ie l , iB2 , - ie2 )  and 

(2.5c) z u = exPG d iag ( iu , i u , - i u , - i u )  

Notice that ~ sends t(Ol,O2)z u to diag(e i(81+u), e i ( 'Oz+u),e i (02-u),  e i ( '82"u) ) ,  

so Z = Z G = ~ ' I ( { ± I ,  ± i l } )  is given by 

(2.6) {t(O,O)Zk~ , t(~,~)Zk~, t(O,~)Z(k+½)~, t(~,O)Z(k+½) : ke  #} 

Let ~j:  diag(a l ,a 2,a~,a 4) ~-> aj as usual. Then @+(g,t) : {~ i -~ j :  1 ~i < j ~ 4 } .  
The compact roots are {el-e 2, e3-~4}. The only sets of strongly orthogonal (sums and 

differences are not roots) noncompact posit ive roots are, up to K-conjugacy, 

(2.7) ¢ , {~i-e3} and {cz-~ ~, s2-~4} . 

I t  follows from general theory that g has exactly three conjugacy classes of Cartan 

subalgebras: t ,  j and If, where t is given by (2.3) and 
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(2.8) 

(2.9) 

(2.10a) 

where 

I(il j : i@2 
0 
0 

0 
: v,8 i rea l ,  20z +02+84 = 0 $ 

0 i84 

h : io 2 0 ~\;~o ~ 
V 2 ~ 0 

~ 2 : real + = 0 
i 0 2 / 

Consider the " in termediate"  Cartan subgroup J corresponding to j .  F i r s t ,  

ovo o oO)  
aj = 0 0 0 

0 0 0 

and t j  = (~jn [k,~]) + (t jn [mj,mj]) 

(2.10b) t j n  [k ,k ]  : - i0 i8 , t j n  [mj,mj]  0 
- i8  -i@ 

0 
Here Tj : { t ( 8 -u ,  O+U)Zu} contains Z G. As Tj = Z(a j )T j  where Z(aj )  is generated 

0 
by Z G and y~z_~3 = e x P G d i a g ( i ~ , O , - i ~ , O )  = t ( ~ , - 2 ) z ~ / 2  e Tj we have 

(2.11a) Tj  = { t (B-u ,  O+U)Zu}, connected . 

S im i la r l y  Mj =Z(aH)M j where Z(a H) is generated by Z G, ys1_~3, and 

= ~ ~ 0 y~2.~4 t ( - ~ ,  ~)z  12 E Tj , so 

(2.11b) Mj ~ SU(l,l) × S l , connected 

Now consider the maximally s p l i t  Cartan subgroup H corresponding to h- Here 

(2.12a) ;Co o v i)} {i ,, 0 0 0 2 and t H -i@ 
aH= v I 0 0 = ie c [ k ,k ]  

0 v 2 0 -iO 

T H= Z(aH)T ~ wi th Z~ H) generated by and Y~1-~3 Yg2-~ 
THO = {t(@,O): 0 <= @ < 2~}. Compute 

as above, and 
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to see that 

ye2_e 4 E ye_E 3 • T~ 

)2k o 
t(0,0)Zk~ , t(~,~)Zk~ E (ye1_s ~ .T H 

t(0,~)Z(k+½)~ , t(~,0)Z(k+½)~ E (Yet-% )2k+l THO 

(2.12b) T H : U (yet_ )n o : n=-~ % TH = MH - ~ x T  

Now we have the Cartan subgroups and the associated cuspidal parabolic subgroups. 

So we can parametrize the tempered series. 

The space A' of (1.7) for the Cartan subgroup T of G is 

(2.13a) 

h real ,  

Here notice that 

(2.13b) 

Since G 

(2.14a) 

t 

AT = {~n,m,h : ! ( e z ' s 2 )  + m h 2 2 (s3-s4) + 7 (~I+~2-e3-~")' 

n ±m ± h # O} 

n,m integers f O, 

exp ~n,m,h: t(O1'~2)Zu ~--> einBl eim8z eihu 

is connected, i t s  re la t i ve  discrete series consists of the 

~(T: n:m: h) = ~n,m,h where 
n,m integers # 0 
h real 
n ± m ± h # 0 

The Weyl group W(G,T) is generated by ref lect ions in compact roots e1-~ z and e3-e 4, 

Thus 

(2.14b) ~(T: n:m: h) = ~ (T :n ' :  m':h')~----->n = i n ' ,  m=±m', h : h '  . 

The space A' of (1.7) for the Cartan subgroup Tj of Mj is 

, = n (ei_~2+~3_~4) + ~(~z_c4): n integer, h#0} (2.15a) Aj = {In, h 

Here 
in@ 2ihu 

(2.15b) exp Xn,h: t(Q-u, @+u)z u ~. > e e 

Since Mj is connected, its relative discrete series consists of the 

(2.16a) ~(Tj: n: h) = ~% where n integer, h#0 o 
n,h 
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i 
O 0 v O )  

, 0 0 0 0 
Parameterize aj  by Os v 0 0 0 = sv; so a s comes by Cayley transform from 

0 0 0 0 _s 
(E~-c~) E i t * .  Now the J-ser ies of  G consists of the 2 

(2.16b) ~(J: n :h :  s) = Ind~jAjNj(q(Tj :  n :h)  ®e  i~s) 

for  nEE,  h and s rea l ,  h~O. The Weyl group W(G,J) is generated by r e f l ec t i on  

in the real root ,  which is 1 on t j  and -I  on aj ,  so 

(2.16c) ~(J: n:h:  s) = ~(J: n ' : h ' :  s ')  ~ n :n ' ,  h=h', s =+s' 

The space A' of (1.7) for the Cartan subgroup T H of M H is 

, n 
(2.17a) A H = {X n = ~(~z-~2+~3-~4):  n integer}  . 

Here 

(2.17b) exp ~n: t (O,e) ---> e ine 

0 Now the r e l a t i v e  d iscrete ser ies of  M H = <y~z_~3> x T H consists of the un i tary  

characters 

(2.18a) q(TH: n: h): (y~l_~3) m t(O,O) ~-> e ~imh e inE) , ova) 
~ 0 0 

n integer and 0 ~_ h < 2. Parameterize a H by ~s,t  I 0 0 = sv1+tv2 

v 2 0 
Then the H-series of G (which is the principal series) consists of the 

iOs, t )  
(2.18b) ~(H: n: h: s: t )  = Ind~HAHNH(q(TH: n:h)  ® e 

for  n in teger ,  0 ~ h< 2, s and t rea l .  The Weyl group W(G,H) is generated by 

conjugation by )< ) i oio0) 1 i 1 - i  and i 0 0 0 i 1 - i  1 ' 0 0 0 i 
0 0 i 0 

The f i r s t  two are t r i v i a l  on t ,  hence on T H c T; the f i r s t  sends ~s , t  ~ ~ -s , t  

and the second sends ~ s , t - - > ~ s , - t "  The t h i r d ,  ca l l  i t  w, is - I  on t H, i n te r -  

changes and and sends --> Compute Y~I-~3 Y~2-c4 ' as , t  ~t,s" 

W: ym~1_~ t ( e , e ) - - >  ym2_~ t ( - 8 , - 8 )  : ym1_~ t(m~T-e, m~-e). We conclude that  

(2.18c) ~ (H:n :h :s : t )  = ~ ( H : n ' : h ' : s ' : t ' ) ~ - - - > e i t h e r  ( n ' , h ' , s ~ , t  ' )  =(n,h,-+s,-+t) 
or ( n ' , h ' , s  r , t ' )  =(-n,h+n,-+t,+s) 
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§3. PLANCHEREL THEOREM FOR SEMISIMPLE GROUPS 

We describe the Plancherel formula for  the class of  reduct ive Lie groups speci- 

f ied  in ( I . I )  and (1.2) .  Here we enlarge Z i f  necessary so that  Z n G O = ZG 0 __ 

jus t  replace Z by ZZG0. Let Car(G) denote a set of  representat ives o f  the 

conjugacy classes of  Cartan subgroups o f  G, chosen so that  eH=H for  a l l  H E Car(G). 

The Plancherel formula says tha t ,  i f  f E Cc(G) , then 

i f  (3.1) f(x) = CG E CHnG° deg(X) 
HE Car(G) XE ZMH(MH )̂  

x E IE . E)(H:X:~:°:rx f) 
~, ~( ~ gAt~e e (~ aH 

× ~EW, h)<v+i°' ~> E@]RT~3gB ,h) p~(X:o) dodX 

where r x f  is the r i gh t  t rans la te  of  f by x, ( r x f ) ( y )  = f ( y x ) .  In th is  sect ion 

we exp la in  the ingredients  of  (3 .1) .  

F i r s t ,  fo r  the formula to make any sense at a l l ,  we must normalize Haar measures 

on the groups over which we in tegra te .  

Let G 1 = ZG°/Z, l e t  al denote the Cartan i nvo lu t i on  derived from 8, l e t  K I 

denote the f i xed  po in t  set of  01 , and l e t  B I be a fundamental (as compact as 

possib le)  Cartan subgroup o f  G z. Warning: th is  no ta t ion  d i f f e r s  s l i g h t l y  from that  

of  [4 ] ,  and the fo l l ow ing  normal izat ions o f  Haar measures are streamlined over the 

ones in [4 ] ,  because we do not need cer ta in  a u x i l i a r y  groups for  the f i na l  formula 

(3 .1) .  

Write < , ) fo r  the K i l l i n g  form on gl and ( , ) fo r  the associated 

pos i t i ve  d e f i n i t e  form, (~,q) = - (~,  Oiq>. S p l i t  B I = T I xAz as in §I .  Then T I 

is a torus;  give i t  Haar measure of  to ta l  mass I / I ~ I ( G I c )  I ,  where GIC is the 

comp lex i f i ca t ion  of  G I and ~z(Gl~) is i t s  fundamental group. The exponent ia l  map 

is a diffeomorphism from a~ to Az; give A I the Haar measure corresponding to the 

( , ) -euc l idean s t ructure of  a I .  Now B I car r ies  the product Haar measure. 

Let B~ denote the regu lar  subset o f  gz. I t  consists of  a l l  elements of  Bz 

whose cen t ra l i ze rs  are Cartan subalgebras. The subset ~ ,  a l l  elements o f  BI whose 

cen t ra l i ze rs  are conjugate to h I , is open in gl and inhe r i t s  a measure from the 

( , ) -eucl idean s t ruc ture  there. Define a G i - i nva r i an t  measure on GI/B 1 by 

e i o ~ E ~  z 

where @+ = @+(BI,b z) is a pos i t i ve  root  system and where f E C:(~).  Normalize 
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Haar measure on G I by 

(3.2b) I f (x)dx = I I I  f(xb)db} d(XB1) 
G I GI/B I B I 

C ~ for f E c(GI) Now we have normalized Haar measure d(xZ) on ZG°/Z = G I. 

Fix a Haar measure on ZG(G°). I f  i t  is compact use the invar iant  measure of 
tota l  mass I .  I f  i t  is discrete use counting measure. Then 

(3.3a) IzG(Go ) f(z)dz = Iz f(z°z)dz 
zoEZG(G )/Z ' 

specifies Haar measure on Z, and 

(3.3b) IZGO f (x)dx = IZGO/Z { I  Z f (xz )dz}  d(xZ) 

defines Haar measure on ZG °, At l as t ,  we have Haar measure on G defined by 

(3.3c) IG f (x)dx = ~ IZGO f(yx)dx 
yE G/ZG ° 

I t  is independent of choice of Z. 
Now that  Haar measure on G is normalized, the operators 

t 
(3.4a) ~(H: ×:~: ~: rxf) = | f(yx)~(H: X:~: ~:y)dy 

J G 

for f E C~(G), and i t  makes sense to talk about their traces specified are c 

(3.4b) C)(H:X:v:o: rxf) = trace ~(H:×:v:~: rxf) 

Those traces are the basic ingredient in the Plancherel formula (3.1). 

Next, we look at the measures d× on the ZMH(M~) ^_ that occur in (3.1). Given 

our choice of Haar measure on ZG(G°), we fixed Haar measure on Z by (3.3a), and 
A 

that normalizes Haar measure on Z by 

(3.5a) f(x) = IZG(G°)/ZI I~ f~(x)d~ 

C ~ where, for f E c(G) and ~ E Z we denote 

F (3.5b) f(xz)~(z)dz f (x) = Jz 

We now normalize dX by 
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(3.6) IZMH(M~) ̂  @(X)deg(X)dX : I~ ~ o ^ @(X)deg(X)d~ 
X e ZMH(M H) 

where ZMH(M~)~ : {X E ZM.(MH )o ̂ : ×i Z has G as summand}. This is equivalent  to the 

normal izat ion in [4, Lemm~ 6.12] .  

* in (3.1) is also normalized through the abel ian Four ier  The measure d~ on a H 

transform. I f  f E Cc(a H) then the ( , ) -eucl idean s t ruc ture  on gl : [ g 'g ]  ] aH 

spec i f ies  f :  a ~ - - > ~  by 

(3.7a) f(~) = I f(~) e i~(~) d~ , 
a H 

and we normalize d~ by 

(3.7b) 2~)-dim aH I , ~(~) e- i~(~)  d~ f (~)  
J 
a H 

The constant c G in (3.1) is given by 

(3.8) W(G ° , B n G o ) 

c G = I~I(GIc) I. IG/ZG(GO)GOl. (2~) r+p 

where B is a fundamental Cartan subgroup of G (e.g. the inverse image of 

BIc G I = ZGo/Z), where W(G °, BhG o ) is the Weyl group 

{x E G°: Ad(x)b = b} / (B n G °) , 

where r = I@+(g,b)l ,  and where p : r a n k G  - rankK = dim a B. 

Given H E Car(G), OH =H, l e t  @~(g,h) denote the set of  real roots in @(g,h). 

So @m(g,h) ={~ ~ @(g,h): ~(h) c~ ,  i.e. ~(t H) =0} and is a root system. 

We can assume a Boa h so h c m B+ a B. Then @~(m B+a B, h) is spanned by strongly 
orthogonal roots, hence is a direct sum of simple root systems with that property. 
For each simple summand there is a number that comes out of the theory of two-structures 

and evaluates to 

(3.9) 
summand A 1 B2n B2n+l C~ D2n G 2 F 4 E 7 E 8 

number 1 2 n ' l  2 n 1 2 n-I 2 2 8 16 

and Q(g,h) is the product (over the simple summands) of  those numbers. Let R(g,h) 

denote the set of  s t rong ly  orthogonal roots of  (g,b) used to def ine h by the Cayley 

transform procedure. Then 

(3.10) CHnGO = IW(G ° H n G ° ) I ' I H n K ° / H n K ° n M ~ I  "Q(g,h) 
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Given ~ E @~(g,h) we denote 

h* E aH: element dual to ~ =  2~//I~//2 

x~ E g~ (~-root space): normalized by [x~,Bx~] = h~ , 

z = x ~ - e x  and ~'~= exPG(~Z~) 

ZG0 and the ¥~ generate a subgroup Z(a H) of ZMH(M ~) such that H~G °= Z(aH)H°. 
I f  ~ E a~ and × E ZM.(M~) ̂  then 

H 

<~,~ ) ~ < - - ~ / z  k -½eP~(~) [X(~) + 

is a scalar  ma t r i x ,  where k = deg(×) 

{~E@+(g,h): Bla H is a mult ip le of ~}. 
of th is scalar, 

and pm is hal f  the sum of 

The factor p (X:~) in (3.1) is the value 

(3.11b) pm(X:~) = deg(X) " I  . t race pm(X:o) 

This completes the descr ipt ion of the terms involved in the Plancherel formula (3.1).  

§4. EXPLICIT PLANCHEREL FORMULA FOR SU(2,2) 

The f i r s t  step is to normalize Haar measure as in §3 for G = S'0(2,2). This 

comes down to the fol lowing. 

(a) Note that the K i l l i ng  form <~,q> = trace(ad(~)ad(q)) on g =su(2,2)  

is given by 

(4.1) (~,q> : 8 - t race(~q)  

This defines the euclidean structure on g by 

(4.2) (~,n) : - <~ ,8~ )  = 8 . t r a c e ( ~ * )  

I t  gives a volume element on the open subset e = u Ad(x ) t ' ,  and on t i t s e l f .  
xEG 

(b) Is f(~)d~ = fG/T{f  t [c~ET'l-@+c~(~)12f(Ad(x)~)d~}d(xT) defines the G-invariant 

: C c° measure on G/T, where @+ @+(g,t) and f E c(~). 

(c) Normalize Haar measure on the compact Cartan subgroup T/Z of 

G/Z = SU(2 ,2) / {+ I ,+ i l }  to have total  volume ~. Then Haar measure on G is given by 
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G G/T T Z zEZ 

C ~ where f c c(G). 
Our Haar measure on Z = Z G : ZG(G °) is counting measure, and IZG(G°)/Zl =I 

in (3.5a). So the Haar measure on Z=ZG(G°)^ is normalized by (3.5) to total 
mass I .  

In (2.13), exp(~n,m,h)IZ = 1 precisely when h/2 is an integer and 

( - I )  n = (_I) m : (_i) h/2 , 

so we may view 

Now 

: {exp(X0,0,h)IZ: 0<=h<4} u {exp(~l,0,h)IZ: O<h<4} 

4 

f~ ¢(~)d¢ = I/Sn=0,1 £ f0 @(exp(Xn'O'h)lz)dh 

That gives us (remember: G =MT), 

(4.4) fZG(GO)̂ £ @(v)dX : Vs ~ J @(In,m,h )dh 
9 E A T m,n -~ 

v,Z agree integers 

SO 

In (2.15), exp(~n,h)Iz=l  precisely when n/2 is an integer and ( - I )  h : ( - I )  n/2, 

= {exp(10,h)IZ: 0<h<2}  u {exp(~l,h)IZ: 0<h<2 } .  Now 

I~ q~(~)d~ ~4 ~ f2 : @(exp(~n,h)Iz)dh 
n=0,1 0 

That gives us 

vc  Aj n integer -~ 
v,% agree 

In (2.18a) express q(TH: n: h) = X h ® exp(~n). Then (X h ® exp ~n)IZ = 1 
exactly when h and n/2 are integers with ( - l )  h = ( - l )  n/2, so 

: {X h ® exp Xolz: O~h <2} u {×h ~ exp ~ I z :  0 ~h<2}  . 

Using (2.12b) and (2.17), now 

(4.6) 
2 

fZMH(M~) x ~ ~(v)dX = ~ ~ I ~(Xh®In)dh 
y e a  H n integer 0 

v,X agree 
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Haar measure on 

(!01 o) 
0 0 0 

~1 = ~/4 o o o 
0 0 0 

becomes 

(4.7) 

co 

aj is given by fl  f (~)d~ : ; f ( r ~ l ) d r  where l l~z l l= l ,  say 
_ o o  

Sim i la r l y ,  Haar measure on 

where ~ : I/4 
i 

using (4 .1) .  Since ~s(~z) = s/4,  the normal izat ion (3.7) 

co 

aj _co 
co (3o 

a H is given by j f (~)d~ = ] J  f ( r l ~ l  + r2~2)dr Idr~ 
# 

a H _co _co ( !0o I (o o 00) , 
0 0 0 and ~ = ~/~ 0 0 0 1 = s /4  
0 0 0 ~ 0 0 0 0 , so ~s, 
0 0 0 0 l 0 0 

and Os, t ( (2)  = t /4  give us 

(4.8) I @(o)do = 1/16ff@(Os,t)dsdt 
~I~ . c o  _co 

As seen just before (2 . i4) ,  W(G ° , B n G  o ) : W(G,T) has order 4 in (3.8). 

Since G is connected, IG/ZG(G°)G° I = l .  Evidently r=6 and p=O. Final ly 

GIC = (G/Z) c = SL(4; C ) / { ± I , ± i l }  has fundamental group of order 4. So 

(4.9) c G : 16/(27) 6 

Note m T = g. Since @~(g, t )  = @, @~(g, j )  is of  type A z, and @~(g,h) is of  

type AIx A I ,  in each case (3.9) gives Q ( g , . ) = l .  From (4 .1 ) ,  a l l  roots ~ = ~ i -  ~j 

have ll~ll 2= II~iI12+ ll~jll 2 =~/4, so ER(g,T-'--F II~II is I ,  Y2, ~4 for  t ,  j ,  h. W(G,T), 
.) 

W(G,J) and W(G,H) were seen in §2 to have respect ive orders 4, 2 and 8. As 

(4.10) c T = 4 , c j  = 1 , and c H = 2 . 

@~(g, t )  : @ SO there are no p6(×:a)- terms for  T. 
+ 

@~(g,$) = {6} ,  the Cayley transform of ~i -~3.  

2~<~s,6) 
Compute (6,~ > = ~s, p6 (d iag (~ i ,O , -z i ,O) )  = 3~i ,  so eP6(y6) = - I  

~ eiZn i~h 
(exp kn ,h) (y  B) =(exp % n , h ) ( t ( ~ , - ~ ) z  /2)= e Thus 

, and 
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(4.11) pB(exp An,h: ~s ) 
sinh(~s) 

cosh(~s) + ( - I )  n cos(~h) 

@~(g,h) = {Bz,82}, respective Cayley transforms of e l -e 3 and ~2-c~. 

<2~qs t' 8j) P8 
' = ~s for j = l ,  ~t for j : 2 .  As above, e (yB) = -I  for Compute - ( ~ j , B j )  

B : BI,B2. Also 

and n(TH: n: h)(y81) 

n(TH: n: h)(Y~2) 
So 

i~h 
= e 

= e i~n ei~h 

sinh(~s) s inh(~t)  
(4.12) ps(q(TH:n:h): Os, t )  : 

8 h) cosh(~s) +cos(~h) cosh(~t) + ( - I )  n 

F ina l l y ,  using llcill 2 = ~/B, we glance back at (2.13a) to check 

n m h 
1 <i<j<__4 

= nl/2(n-m+h) I/2(n+m+h)I/:(-n+m+h)I/2(-n-m+h)m lleill 6 

that  is ,  

- 2 2  (4.13) <~ m> = 2 nm(n+m+h) (n+m-h) (n-m+h) (n-m- h) 
t)  n,m,h' 

S Simi lar ly ,  using (2.15a) and the fact that ~s comes from ~ (c i - c3 )  
transform, 

by Cayley 

(4.14) E@T~B, (An +i~s,m> : -2-22ihsl(n+h) + is I21(n-h)  + is [  2 ~) ,h 

and, using (2.17a) and the fact that  as, t comes from ~(s(e1-m3) + t (e2-e , ) )  
Cayley transform, 

(4.15) T ' ~  <~, + i~  ~) = 2 - 2 2 s t l n + i ( s + t ) I 2 1 n + i ( s - t ) I  2 
If) n s , t '  

Now we are ready to put speci f ic  values into (3.1).  Break the sum over 
Car(G) ={T,J,H} into 

C ~ (4.16) f (x)  = fT(x) + f j ( x )  + fH(x) for f E c(G) 

Then, from (3.1) and the preceding resul ts  of th is  sect ion, 

cos(~h) 

by 
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co  co  

= 2-29~T-6 ~ I O(T: n:m: h: rxf) x 
m,n=-o~ _oo 

x I nm (n+m+h) (n+m-h) (n-m+h) (n-m-h) I dh 

(4.18) 

and 

(4.19) 

f j (x)  
co  co  co  

= 2-28~-6 ~ n:-~ _~_ f I~ °~J:n:h;s:rxf~ x 

x lhsrn+h+isI21n-h+isl 2 sinh(~sl 1 
cosh(~s)+(-l)n cos(~h) 

dhds 

2 co co  
co  

fH(x) = 2-31~-6 >-~'n=-co IO{/~ I _  _~ C~(H: n: h: s: t :  rxf) x 

cosh(TTS) +COS(~Th) cosh(Trt)+(-l) n cos(~h) 

Combining these and using (2.14b), (2.16c) and (2.18c), we f ina l ly  arrive at 

4.20 THEOREM. Let G be the universal covering of the oonformal group. In the 

and notation described above, if f e C~(G) and xE G then normalizations 
C 

227~T6f(x) = 
co  

fo~IT:o:m 
m,n=l _ 

+ k O(d:n:h:s:rxf) hsln+h+is]21 n'h+is 
n : l  ~ l 

2 co S 

 f{ff I + 1/2n~-~ ~=- O(H:n:h :s : t : rxf )  stln+i(s+t)l  2 
0 O 0  

:h:rxf ) nm(n+m+h)(n+m-h)(n-m+h)(n-m-h) dh 

2 ~ si nh____ (~TS] Ids~ 
cosh(~s)+(-I )n cos (~h) 

× in+i(s_t)l 2 sinh(~s) sinh(~t) I dtdsldh 
cosh(~s) +cos(~h) cosh(~t)+(-l) n cos(~h) 

dh 
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RANK ONE SYMMETRIC SPACES 
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0. Introduction 

Some physical considerations (e.g. the study of the scattering 
. .V 

amplitude of two particles in the t channel [8]) have lead Llmlc, 

Niederle and Raczka to the study of harmonic analysis on hyperboloids 

and cones. From the abstract of their 1967 paper [8] in the Journal of 

Mathematical Physics we quote: 

"The eigenfunction expansions associated with the second order invarianl 

operator on hyperboloids and cones are derived. The global unitary 

irreducible representations of the SOo(p, q) groups related to hyper- 

boloids and cones are obtained. The decomposition of the quasi-regular 

representations into the irreducible ones is given and the connection 

with the Mautner theorem and nuclear spectral theory is discussed". 

Their study is related to earlier work done by Tolar, Barut and Salam. 
. .V 

The ideas developed by Llmlc, Nieder!e and Raczka were taken up in the 

seventies by such mathematicians as Molcanov [i0], Strichartz [19], 

Rossmann [44] and in particular Faraut [13. They started a systematic 

study of the harmonic analysis of rank one pseudo-Riemannian semisimple 

synunetric sp~ces. The main emphasis was on the classical isotropic 

spaces: the hyperboloids over the reals, the complex numbers and the 

quaternions. Since 1980 a group of mathematicians at Leiden University, 
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have tried to complete the above program. Recently we succeeded in 

giving the decomposition of the quasi-regular representation into 

irreducible ones for all rank one spaces. M.T. Kosters treated the 

hyperboloid over the octonions E61 and obtained partial results for 

the space SL(n,~)/GL(n-I,~) E63. The Plancherel formula for the latter 

space was recently obtained by the author and Poel [221. The non- 

isotropic symplectic spaces were clarified by W.A. Kosters E73. He also 

has complete results now for the space F4(4)/Spin(4,5) . Finally the 

author obtained the Plancherel formula for the spaces 

SL(n,~)/GL+(n-I,~) . In this lecture we shall report on our work in a 

historical perspective. 

i. Orthogonal groups 

Denote by O(p,q) the group of (p+q) × (p+q) matrices, with non-zero 

determinant, which leave invariant the quadratic form 

2 2 2 + x 2 2 
-x I - x 2 - ... - Xp p+l + "'" + Xp+q 

Let SO(p,q) be the subgroup of O(p,q) consisting of matrices 

of determinant equal to one. SO0(P, q) [or SOe(P, q) , or SO+(p,q) 3 

is the connected component of the identity of SO(p,q) . The following 

special cases are well-known in physics: 

p = 1 , q = 5 : the Euclidean conformal group 

p = 1 , q = 4 : de Sitter group 

p = 1 , q = 3 : Lorentz-group . 

For p = 1 , SO0(P, q) can be described more explicitly as: 

SO0(l,q) = {g 60(l,q) :detg= l,gll a i} . 

Let p a 1 , q -> 1 

Put X = SO0(p,q)/SO0(p,q-l) 

Let e be the basis vector in ]R ~' given by e = (0,0,...,0,1) . The 
n n 

map g ~ g.e n i(g6SO0(p,q)) has stabilizer SO0(p,q-i ) and hence we 

get a natural isomorphism of X onto one sheet of the hyperboloid 

2 2 2 + x 2 + . + x 2 = 1 . 
-Xl - x2 - "'" - XD p+l "" p+q 
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G = SO0(P, q) acts on X by left translations. Furthermore, it is 

well-known that X carries a (up to a positive constant unique) 

positive G-invariant measure dx . So G also acts on L2(X) by 

unitary operators: g.f(x) = f(g-lx) (g 6 G,x6 X,f 6 L2(X)) . Our main 

purpose is the decomposition of the space L2(X) into irreducible 

subspaces for G 

If q = i , so X = SO0(P,I)/SO(p) this decomposition is well-known 

(cf. [20]). Note that X is a Riemannian symmetric space in this case. 

For q > 1 , X is pseudo-Riemannian. 

In general the decomnosition of L2(X) contains a continuous and 

discrete part (if q = 1 , no discrete Part occurs:). We also pay 

attention to the question whether the decomposition is multiplicity-free 

or not. We recall the definition. A unitary representation ~ of G 

on a Hilbert space H is said to be (or to decompose) multiplicity-free 

if the commutant of ~(G) in the algebra of continuous linear operators 

of H into itself, is abelian. 

2. Hyperboloids and symmetric spaces 

Let J be the (p+q) × (p+q)-matrix given~by 

11 1 
"8""1 

\ -i 

and o the involutive automorphism of G = SO0(P, q) defined by 

~(g) = JgJ . Then SO0(p,q-l) is precisely the set of fixed points 

of o : 

SO0(p,q-l) = {g 6 G:a(g) = g} . 

DEFINITION. Let G be a connected Lie group and ~ an involutive 

automorphism of G . Let G o be the subgroup of fixed points of 

and G O its connected component of the identity. Choose a closed sub- 

group ~H with G 0~ c H c G~ The pair (G,H) is called ~ symmetric 

pa~r and X = G/H a ~ymmetric space. 

So (SO0(p,q),SO0(p,q-l)) is a symmetric pair and the hyperboloid 

X = SO0(p,q)/SO0(p,q-l) is a symmetric space. We give some more examples. 
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I. Let G 1 be a connected Lie group and put G = G 1 x G 1 . Define 

~(x,y) = (y,x) . Then ~ is an involution on G , G = diag(G) and 

X = G/G is naturally isomorphic to G 1 by the map: 

g ~ (g,e)G (g 6 G I) 

G acts on X = G 1 by 

-i 
(x,y).g = xgy (x,y,g6 GI) 

Assume that G 1 admits a left- and right-invariant positive measure 

dx . 

L2(X) ~ L2(GI ) is decomposed into bi-Gl-invariant irreducible subspaces; 

this is precisely the content of the Plancherel-theorem for G 1 , 

provided G 1 is supposed to be a type I group. 

The (abstract) Planoherel-formula looks like: 

G 1 G 1 

C B 

continuous part discrete part 

(f a smooth function on G 1 with compact support). 

Or 

f(e) = ] <f,O >d~(~) 

G 1 

Here 0 is the (distribution-)charaoter of ~ . 

Special cases: 

G = 
[ < 2~ixy>_ 

f,e ay : f(0) = ] 

-oo 

(Fourier-integral) 

G = IR/~ : f(0) = [ <f,e2~in~> 

n6Z~ 

(Fourier-series). 
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For semisimple groups G 1 , Harish-Chandra has determined the Plancherel 

formula explicitly. Probably this will turn out to be one of the greatest 

efforts of the twentieth century in mathematics (see [43). The 

decomposition is multiplicity-free in this case by a result of Segal 

and Godement [17] (G 1 non-necessarily semiSimple). 

II. Let G be a connected semisimple Lie group with finite centre. 

Here we choose now ~ to be a Cartan-involution of G . H = G is 

compact and connected in this case. 

Examples, G = SO0(P,l) , H = SO(p) , o as at the beginning of this 

section 

G = SO(n) , H = SO(n-i , o as at the beginning of this 

section 

The decomposition of L2(SO(n)/SO(n-I- ) is perhaps best known, since it 

is part of most introductory courses in harmonic analysis. The reader is 

referred to [15]. For n = 2 we are back at ordinary Fourier series 

theory and the decomposition is given by Parseval's theorem. For n > 2 

one is lead to "spherical harmonics". 

For G non-compact, the decomposition is more complicated. The following 

abstract form of a Plancherel formula was derived by Godement [3]: for 

all smooth functions f on G/H with compact support one has 

f(eH) = I <f'~l> d~(1) 

A 

Here ^ is the parameter-set of the zonal spherical functions ~I 

which are positive-definite, and ~ a (uniquely determined) positive 

Radon measure on ^ . 

So the role of characters in the group case is taken over by positive- 

definite spherical functions on G . Each Ch is an eigenfunction of 

all Laplace-operators on G/H . The explicit form of ~ is determined 

by Harish-Chandra [5]. The decomposition of L2(X) is multiplicity-free, 

which is commonly expressed in mathematics by saying that the pair 

(G,H) is a Gelfand pair. Furthermore only representations with a 

vector fixed by H in their representation-space arise in this 

decompostion. 

We note that in both cases I and II, the Dirac-6-distribution is 

decomposed into elementary (extremal) positive-definite distributions. 
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3. Pseudo-Riemannian rank one symmetric pairs 

For simplicity of the formulation we restrict ourselves to rank one 

semisimple symmetric pairs in this section. Most theorems are however 

true for general symmetric pairs or even in a more general context. 

Rank one pairs comprise not only the real hyperbolic pairs 

(SO0(p,q),SO0(p,q-l)) . The following list is taken from [23]. 

G H G/H 

Spin (p,q+l) Spin (p,q) 

Spin (p,q+l) G 

SU (p,q+l) S(U(p,q) ×U(1)) 

Sp (p,q+l) Sp (p,q) ×Sp (I) 

F4(-20) Spin(l,8) 

SL (n+l,]R) S (GL+ (n, JR) ~×GL+ ( 1, IR) ) 

SL (n+l,]R) S (GL (n, IR) ×GL (i, JR) ) 

Sp(n+l,]R) Sp(n,IR)×Sp(I,]R) 

F4 (4) Spin (4,5) 

SO 0 (p,q+l)/SO 0 (p,q) 

SO (p,q+l)/S (0 (p,q) xO(1) ) 

p,q -> 1 

p,q -> 1 

p,q >- 1 

p,q -> 1 

n>_l 

n>_2 

n>_2 

A form of an (abstract) Plancherel formula for G/H , which gives some 

hope for actually Computing it in concrete cases, was only recently 

found (see [223 for details). 

Call o the Laplace-Beltrami operator on X = G/H . A distribution T 

on X is said to be spherical if 

(i) T is H-invariant 

(ii) T is an eigendistribution of o : 

oT = IT for some complex number ~ . 

Then one has the following theorem (see [22]). 

THEOREM. Let S be a "good" parametrization of the elements of G 

which allow an H-fixed distribution-vector. There exists a (non- 

necessarily unique) Radon measure m on S such that 

r 
(i) ~(eH) = J <Ts,¢> dm(s) for all smooth ~ with compact 

S 

support on X 

(ii) for s 6 S , T s is a spherical and extremal positive-definite 

distribution. 
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Unieity occurs as soon as one knows that the representation of G on 

L2(X) is multiplicity-free. 

The main ingredient of the proof of the theorem is L. Schwartz' theory 

of reproducing kernels [163 and Thomas' theory of desintegration of 

such kernels (see e.g. [213). 

4. multiplicity 

The following result was recently obtained by the author (see [233): 

For all semi-simple symmetric rank one pairs, listed in section 3, 

L2(X) is multiplicity-free, except for the pairs 

(Spin(l,q+l),Spin(l,q)) (q a i) 

[or (SO0(l,q+l,SO0(l,q))] 

Indeed, the decomposition of L2(X) shows multiplicity = 2 in the 

continuous part for these pairs. 

In [23] we actually proved a much stronger result: any unitary 

representation of G which can be realized inside the space of 

distributions on X = G/H , is multiplicity-free. So in particular 

L2(X) is multiplicity-free. (G and H as before). 

5. Explicit form of the Plancherel formula 

In the following scheme we mention the rank one spaces and the authors, 

who found an explicit form of the Plancherel formula for these spaces. 

Hyperbolic spaces (over ~, • , ~). 

over ~ : X = SO0(p,q+l)/SO0(p,q) - Molcanov [i0] (1981) 

X = SO0(p,q+l)/S(O(p,q)×O(1)) - 

p = 1 , q = 2 : Gelfand, Graev and Vilenkin [2] 

p = 1 : Shintani [183 
• ,V 

all p,q a 1 : Llmlc, Niederle, Raczka [8], Strichartz [193, Rossmann 

[143, Molcanov [10], Faraut [13 (1979). 

over • : X = SU(p,q+I)/S(U(p,q)×U(1)) - 

p = 1 : Matsumoto [99 

all p,q a 1 : Faraut [i] (1979). 



251 

over ]H : X = Sp(p,q+l)/Sp(p,q)xSp(1) - Faraut [i] (1979) 

F4(_20)/Spin(l,8) - M.T. Kosters [6] (1982) 

SL(n+I,~)/GL(n,~) - Poel en Van Dijk [22] (1984) 

n = 2 : Molcanov [12] 

SL(n+I,~)/GL+(n,~) - Van Dijk (1984) 

n = 1 : Molcanov [i13 

- W.A. Kosters [7] (1985) 

- W.A. Kosters (1985) 

Sp(n+l,m)/Sp(n,m)xSp(l,m) 

F4(4)/Spin(4,5) 

The idea of the construction is to start with the determination of 

the spectral resolution of the Laplace-Beltrami onerator. The trick of 

Limi~ c.s. to reduce everything to second order ordinary differential 

operators by using the action of a maximal compact subgroup of G on 

L2(X) , works only for isotropic spaces: the hyperbolic spaces over 

, { , ~ and F4(_20)/Spin(l,8) In the other cases one has to 

choose another way to overcome the difficulties (see e.g. [223). 

To get an idea of the form of such a Plancherel formula we give it 

for X = SO(p,q)/S(O(1)xO(p-l,q)), with p > 1 and q odd (see [i], 

Th6or~me i0) 

oo 

¢(eH) = <#'~i~> Ic(i~) I 2 
0 

+ [' ] <},~p+2r+l > Residu c(s)c(-s) ' p+2r+l 
p+2r+l > 0 

for all smooth 

n = p+q , 

c(s) 

on X with compact support. Here p = ½n-i , 

V~ F((s+p)/2) F((s+p-p)/2) F((s+q-p)/2) 
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A spin-off from highest weight representations; 

Conformal covariants, in particular for 0(3,2). 

Hans Plesner Jakobsen 
Mathematics Institute, Universitetsparken 5 
DK-2100 Copenhagen @, Denmark 

0. Introduction 

Let P = G/K be a hermitian symmetric space of the non-compact type 

and let ET, = G x K V~I. be holomorphic vector bundles over P ; 

i=I,2 , defined by finite-dimensional representations T i of a 

maximal compact subgroup K of the group G of holomorphic transfor- 

mations of P . Denote by Fh(ETi) the space of holomorphic sections 

of ETi and let UTi denote the representation of G on Fh(E Ti) 

obtained from left translation of G on ET 
l 

Consider a differential operator 

(0.1) D: s 6 Fh(E T ) * Ds 6 Fh(E T ) 
] 2 

Definition. D is covariant if 

(o.2) Vg 6 G Vs 6 Fh(E T ): DU T (g)s = U T (g)Ds . 
I I 2 

The bundles ETi may be parallellized; then Fh(ET )l becomes the 

space 0(VTi) of VT'-valuedl holomorphic functions on D and D 

becomes a matrix-valued differential operator. 

We may restrict (0.2) to the Shilov boundary of D ; for appropriate 

realizations of ~ and for suitable choices of G , among the spaces 

obtained as such are n-dimensional Minkowski space as well as U(n) , 

n=I,2, .... Secondly, the representations involved are of positive (or 

one-sided) energy. For these as well as more abstract reasons, one is 

interested in 

Problem I: Determine all such (D,TI,T2), and more generally, 

Problem II: i) Determine all invariant subspaces of 0(VTI) and 

identify the subquotients, ii) In particular, determine which 
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subspaces correspond to kernels of differential operators. 

Let g denote the Lie algebra of G . We note here that, due to 

analyticity, D is covariant if and only if 

(0.3) Vf E 0(V T )Vx 6 B : DdU T (x)f c dU T (x)Df , 
I I 2 

where dU denotes the differential of the representation U . In 

fact, as explained in [4] or [7], the problem is completely (modulo 

coverings of G) equivalent, by duality, to the algebraic problem of 

determining all homomorphisms between certain highest weight modules 

(~ vacuum vector representations) of g We remark that such a homeo- 

morphism into a vacuum vector representation is completely determined 

by a second vacuum in the given space. We further remark that by this 

transformation, even the space P seems to disappear from the discus- 

sion. In some sense this is true, and this implies that the results 

hold for a number of different realizations, but, in fact, one reali- 

zation is still there; as a subset of a subspace of the complexifica- 

tion of g 

In the following sections we explain in more detail about the highest 

weight modules involved. Then we turn to the special case B = so(3,2)= 

sp(n,~) and describe a complete solution to the classification problem. 

It should be noted that this is an example of a group with two root 

lengths. We have also recently obtained the full classification for 

su(2,2) , and state the result without proof. The details for su(2,2) 

will appear in [8] in which also a more detailed (but still far from 

complete) bibliography is given. 

Finally, it should be remarked that our Problem II, though quite 

formidable in its full generality, still is only a special case of the 

programs of Dobrev ([3], and references therein) and of Angelopoulos 

([I]). (See also these proceedings.) 

I. Simple Lie algebras 

A Lie algebra g is called simple if it contains no ideals except 0 

and itself, and such that, furthermore, ~ is non-abelian. Then 

g = [g,g] We will assume that ~ is complex, but usually we will 

have in mind that g is the complexification of some specific real 
¢ 

Lie algebra g~ ; g = (~) = g~ ®~ ¢ • 
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Let h be a Cartan subalgebra of ~ . Then, under the adjoint action, 

h can be diagonalized simultaneously. Let a 6 h* and set 

g5 = {x 6 ~ I Vh 6 h: [h,x] = a(h)x} (I .I) 

Further set 

(I .2) A = {5 ~ h* I g~ * {0}} . 

A is called the set of roots, and ga is the space of root-vectors 
5 

belonging to ~ . It is a fact that Va 6 A: dim{g = 1 , and 

a 6 A~-5 6 A . 

On ~ there is a symmetric bilinear form B ; the killing form, and 

the restriction of B to h induces, via duality, a non-degenerate 

form (.,.) on h* and hence on A On the real span of A , this' 

form is real and positive definite. Furthermore, 

(1.3.) 5,B 6 A ~ <5,B>d~f. 2(~'5)(5,d) 6 2 . 

5 -5 
For 5 6 A let h 5 6 [g ,g ] ~ h be determined by a(h 5) = 2 . Then 

(1.4) <a,~> = B(h a) 

Set 

(1.5) Sa(B) = B - ~(ha)a • 

Then S (A) = A , and the reflexions S 5 

called Weyl group of A . 

, a 6 A , generate the so- 

Finally the elements in a basis X of A are called the simple roots. 

A decomposes according to X into 

(1.6) A = A + U A- 

where A + denotes the set of roots whose coordinates w.r.t. X all 

are non-negative integers, and A- = -A + (A good reference to this 

section is [6].) 

2. Highest weight modules 

Fix a basis X of A . Set 
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= + - + -a P 21 Z +s (2.1) g+ Z gs , g = Z g , and let = 
sE& sEA s6& 

Then 

+ 
(2.2) g = g @ h • g 

We let U(g) denote the universal enveloping algebra of g . 

follows from (2.2) that 

( 2 . 3 )  U(g) = U ( g - ) U ( h ) U ( g  +) 

Let A 6 h* . 

as follows: 

i) 

(2.4) ii) 

iii) 

It 

The Verma module M(A) of highest weight A is defined 

I) M(A) is a representation space of U(g) and contains 

a vector v such that 

M(A) = U(g).v A 

Vh E h: h.v A = A(h).v A 

+ 

Vx E g : x .v A = 0 . 

2) M(A) is maximal in this respect. (M(A) = U(~-) ® v A 

as a representation of h ) 

More generally, a highest Weight module of h.w. A is a module that 

satisfies I) above. A special instance of this is a generalized Verma 

module Mp(A) which is a quotinet of M(A) and corresponds to induc- 

tion from a (not necessarily minimal) parabolic p . We shall be 

interested in generalized Verma modules corresponding to holomorphic 

induction, and for that reason we only furnish the details for this 

case: 

~ssume from now on that g corresponds to a hermitian symmetric space 

(a good reference for what follows is [5]). Let 

(2.5) g]R = k]R • P[IR 

be a Cartan decomposition of the underlying real Lie algebra. Then (2.2) 

decomposes further into 

(2.6) g = p- • k- • h • k + • p+ where 

(2.7) k = (~]R)¢ = k- • h • k + , p = p]R ¢ = p+ • p- , and 

[p+,p+] ~ [p ,p ] = 0 . 
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In the present case there is a unique simple non-compact root 

(gZ c p+) , and /~{~} is a set of simple roots for kl = [k,k] 

(We have that k = k I @ ~(h) where q(k) is the l-dimensional center 

of k ; ~(k) = ~.h 0 .) 

Let h I = h 0 k I and let Yr 

fies: Yr + Yr 
g c p and Vx 6 g 

can be written as 

Yr 
denote the highest root (g satis- 

Vy £ h+: [x,y] = 0 ). Then i 6 h* 

(2.8) A = (A0,I) where A 0 = Alh I 

From now on we assume: 

and I= A(hyr) 

(2.9) ¥~ 6 ~\{~}: A0(h ~) 6 ~ U (0} and i 6 ~ . 

It follows that A 0 determines a finite dimensional representation 

V(A 0 ) of k I ; 

(2.10) V(A 0) = U(kl)/I 

where I is a left ideal in U(k I) If V(i 0) is given together 

with its highest weight vector vA0 , I is determined as I = 

{u 6 U(kl) [ u.vA0 = 0}. However, usually it is the other way around; 

I determines V(A0) 

The generalized Verma module Mk(i) is defined by 

(2.11) Mk(i) = U(g) ® V(A) 
U (kep +) 

where V(A 0) is extended to a representation V(A) of U(h S p+) by 
+ 

letting h 0 act by A(h 0) and letting p act as zero. Clearly, 

(2.12) Mk(i) = U(p ) ® V(A) 

as a representation of k . Further, if A(A) = U(g).I.v i then 

(2.13) Mk(i) = M(A)/~(A ) 

is a realization of Mk(A) as a quotient of M(A) 

3. Homomorphisms between highest weight modules 

Let R A and RAt be highest weight modules of h.w.'s A and A 
I ' 
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respectively. A homomorphism ~ of RAt into R A is a map from RA1 

to R A which commutes with the representations. In particular, 

~(VA1) = ~AI 6 R A is a vector which satisfies I) ii) and iii) in (2.4) 

for A 1 . We assume that ~ is non-trivial i.e. that ~AI • 0 . 

Conversely, if a non-zero vector in R satisfies I) ii) and iii), 

then one can clearly define a map ~: M(A I) ~ R A , and out of ~ one 

can construct a map of any given quotient of M(A I) into an appropri- 

ate subquotient of R A . It is also clear that it may happen that the 

induced map between a quotient of RA1 and a quotient of R A may be 

zero. 

In particular, a map ~: M(A I) ~ M(A) may induce the trivial map from 

Mk(AI to Mk(A) 

In this area, the most important theorem is the BGG (Bernstein-Gelfand- 

Gelfand) theorem. TO formulate it we need: 

Definition 3.1. Let X,~ 6 h* A sequence of roots ¥i,...,y k is 

said to satisfy condition (A) for the pair (X,~) if 

i) X = S ..... S X 
Yk YI 

ii) Put X0 = ~, and Xi = S i S i ~ Then 

Vi=1,...,~: <Xi_1,Yi > 6 ~ . 

Under these circumstances, (X,~) is said to satisfy (A) 

Theorem 3.2 (BGG; [2]). i) There is a non-zero homomorphism from 

M(A I) if and only if (AI+ p, A÷p) satisfies (A) ii) If there is 

a homomorphism from a (sub-)quotient of M(A I) to a (sub-)quotient of 

M(A) , then (AI+~, A+p) satisfies (A) 

Let ~ = {s 6 4+ I ga c p+} be the set of non-compact positive roots. 

The following is proved in [7]. 

corollary 3.3. if there is a non-trivial homomorphism from Mk(AI) 

to a (sub-)quotient of Mk(A) , then (At+P, A+p) satisfies (A) 

with a sequence y1,...,yk of positive non-compact roots. 
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4. 0(3,2) ~ Sp(2,1R) 

The following realization of g = ~(3,2) = sp(2,~) is convenient 

because it displays p+ and p- directly as k-representation spaces. 

Let 

(4.1) k + = ~ 0 - 0 and hk= [k+,k -] 
0 _~ , k = 0 00 XI0 ' 

= I Za,Zb, and z £ ¢ (4.2) p- Za Zb 0 c ' 

[z b z c 

0 Zb Zc 
(4.3) p+ = 6 ¢ 0 0 I Za,Zb, and z c 

and 

Then 

(4.4) k = ¢-k + • ¢ k- @ ~.h k and g = k @ p+ @ p- 

We let Za,Z b, and z c denote the elements of p corresponding to an 
+ + + 

entry I at the appropriate place in (4.2), and we let Za,Zb, and z 
+ C 

denote the analogous elements of p in (4.3). Also let 

+ + + 

(4.5) h a = [Za,Z a] , h b = [Zb,Z b] , and h c = [Zc,Zc] 

The elements hk, ha, hb, and h c are all of the form h~ for roots 

We denote these by ~,B,~, and ¥, respectively. As before, B 

is the simple non-compact root, and Y = Yr is the highest root. 

We identify h and h* with ¢2 

basis vectors. Then 

Let e I and e 2 be the usual 

(4.6) B = 2e 2 , s = e1+e 2 , Y = 2e I , and ~ = el-e 2 

Furthermore, 

(4.7) h a = e 2 , h b = e1+e 2 , h c = e I , and h k = el-e 2 . 

A generalized Verma module A is determined by 

(4.8) A = (/,l-n) ; n 6 ~ U {0} , and p = (2,1) 

In the following, n will be held fixed and 1 will be allowed to 

vary. The following is obtained, by trial and error, from Corollary 3.3. 
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Lemma 4.1. If there is a non-trivial homomorphism Mk(A I) ~ Mk(A) 

then the sequence of reflexions corresponding to the sequence of roots 

in condition (A) is, for 1 in the given intervals satisfying 

throughout that 21 6 ~ ; and furthermore, whenever S or S B 

take part, satisfying that i 6 ~ : 

(4.9) 

I < -I : None 

n 
-I < I < ~-2 : Sy 

n S S y, I < X < n-2 : SO , y a 

n-2 < I < n : S 

n < X : S~ , SsSg , 

(n > I) 

(n > I) 

S o (= SySsS B) 

We have from (2.12) that Mk(A) is genrated by expressions of the form 

Zl....- z r ® v with Zl,...,z r 6 p and v 6 V(A) It is obvious 

that k preserves the degree r of such an expression. To describe 

the representations of k which occur in a general Mk(A) we must 

first describe the k-representation in U(p ) : Let 

I 2 
(4.10) det z = ZaZ c - ~ z b 

The highest weight vectors of U(p) as a k-representation are then 

(4.11) z r det z s ; r,s 6 ~ U {0}. 
c 

This is obvious from the representation theory of U(2) Observe that 

the k I weight of (4.11) is r and that the degree is r+2s . The 

Q-product U(p ) Q V(A) is then easily computed either directly from 

the U(2)-theory or from [9]. Recall that V(A) denotesJthe k-repre- 

sentation defined by (A0,1) Observe that if A = (l,l-n) and if a 

k-irreducible subspace of kl-weight ~ occurs in the ®-product of 

degree d expressions in U(p-) with V(A) , then if 2d > n+~ , 

the U(p-) terms must all contain a factor of det z . 

We list here the relevant commutators 

(4.12) 

[k+,Za ] = -z b , [k+,Zb ] = -2z c , [k+,Zc ] = 0 

[k-,Za] = 0 , [k-,z b] = -2z a , [k-,z c] = -z b 

+ + 

Ek+ =0 Ek+ zb] = Ek+ = 2 b 

k + , -k + [k+,hc ] : , [k+,hb ] : 0 [k+,ha ] = 
+ 

[z~,Za] = 0 , [Zc,Zb] = k- , [hk,Zc] = 2z c 

- , k + , k + [z~,Za] = k [z~,Zc] : [z:,z b] 
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The following is then straightforward 

Lemma 4.2. Inside U(~) , 

(4.13) 

z+det z s = s det zS-lzc(ha + 3/2- s) modulo U(~).k + 
a 

z~det s zS-1 + z = -s det (Zb/2(h b + 3 - 2s) - Zck-) modulo U(g)k 

z~det z s = s det zS-1(Za(hc + 3/2 - s) - Zbk-/2) modulo U(~)k + 

Observe that the representation space in U(p ) whose highest weight 

vector is given by (4.11), is spanned by the elements ((adk-)izcr) • 

det z s for i=0,...,r . 

r r-1 r+1 
Since p- @ (® p-) = det z ® p- ~ ® p- , one can easily establish 

S S S 

the following (it suffices to prove the first) 

Lemma 4.3. Let c = (~+I)-I(4~+2) -I Inside U(p-) , 

(4.14) 

Zc(adk-)aZc B = (2B-a+2) (2B-s+1)s (adk-) a zB+Ic + 

B-1 2~.~(~-I) (2~+1)-Idet z(adk-) a-2 Zc 

zb(adk-)aZc B = -2(2B-a+1)'c(adk-)~+1 zB+Ic + 

4~B(2B+l)-ldet z(adk-) a-lzB-1 
C 

Za(adk-)~ZcB = ~(adk-)~+2 ZcB+1 + 4B(2B+1)-Idet z(adk-)~ zB-Ie 

For later use we observe that if a vector v # 0 in a k-representation 

space satisfies that k+.v = 0 and hk.V = ~.v for an integer ~ > I, 

then 

N-- I 
(4.15) (Z a + n Zbk + ~-I (~-1)-Izc(k-) 2) .v 

is a highest weight vector in p- @ V of kl-weight ~-2 

Likewise, 

(4.16) (z b + 2~-Izc k-) .v 

is a highest weight vector; its weight is ~ , and it suffices that 

be a positive integer. 

d 
Lemma 4.4. Let v 6 (® p ) ® V(A) be a highest weight vector of 

weight ~ = y+n-x and let 2d = x+y . Then, if ~ > 0 (4.16) defines 



262 

a non-zero element of U(p- ® V(A) ; and if ~ > I , so does 14.15). 

Proof. The two cases are similar, so we only consider (4.16). With 

no loss of generality we can assume that v does not contain a factor 

of det z . In particular, we may assume that x < n . It follows 

that 
x+y 

14.17) v = (ad k-) x z c • v + terms from U(p ) ® Span (k-) v A i=1 

Thus, it suffices to consider the vA-coefficient of (4.16), i.e. 

x+y 

2 + 2(y+n_x)-Iz (adk-)X+1 (4.18) z b (ad k-) x Zc c Zc 

This, however, is easily computed to be, with 6 = (x+y+2) -I (x+y+1) -I , 

2~(y+I) [-1+y(y+n-x)-1] (adk-) x+1 z ~+I 
C 

(4.1 9) x+y 

+ (x+y+1)-1.2.x.(x+y)[1+(x+1) (y+n_x)-1]det z . (adk-)X-1 z 2 -I 
C 

and this is clearly always non-zero. 

Let us now turn to the problem of determining when there can be a 

homomorphism into Mk(A) First of all, we proved in ([7], Proposi- 

tion 1.6) that anything of the form S- with ~ long defines a 
Y 

homomorphism. In case 21 ~ 2~ , the same argument implies that S 

defines a homomorphism, since it is the only possible non-compact root 

at such l's . In fact, it is possible to find another sequence which 

satisfies condition (A) for the pair (S~(A+p),A+p) if and only if 

is an integer, and ~ > n-1 By a result due to Boe, it follows (cf. 
n 

[7], Proposition 1.4) that for ~- I ~ ~ < n-1 and 21 6 ~ , S a 

does define a homomorphism. In the remaining cases for S a as well as 

for SyS a and SaS ~ , one is led to consider a highest weight vector 

q in U(p-) ® V(A) which satisfies 

(4.20) 
a) p+q = k+q = 0 

b) q = det zSq for some s 6 

We will always assume that the s in b) is the biggest possible such. 

Let Us further assume that the weight A 1 of q is (~i,11-ni) It 

then follows from (4.13) that 
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+__ 

(4.21) sdetzS-lzc(l I + 3/2 + s)q + detzS Za q = 0 . 

Due to the fact that the ideal generated by det z is prime, and due 

to the assumption that s is biggest possible (q does not contain a 

factor det z) , it follows that 

(4.22) 11 + 3/2 + S = 0 

This equation has three interesting consequences: i) only one s is 

possible, ii) 11 , and hence 1 must satisfy: 21 ~ 2~ , and 

iii) -I I ~ 5/2 (s ~ 1) 

Returning to S S a and SaS B , it is easy to see (cf. the remarks 

following (4.11)) that if a homomorphism exists, it must be defined 

for a q of the form (4.20). Hence, since both exist only if 21 6 2~, 

this is impossible. Finally, there can be no multiplicities for S 

due to consequences i) and iii). 

This still leaves open the question whether some quotinets exist which 

are not defined by homomorphisms. However, Lemma 4.4 together with an 

easy count of multiplicities (cf. the proof for su(2,2) in [8]) gives 

that there are no such quotients. Observe that at the situation in 

sp~2,~) corresponding to the place in su(2,2) where a non-homo- 

morphic quotient exists, namely S S a with I = (n-2)/2 (n even), 

the corresponding R-type does not belong to U(p-) ® V(A) We can 

then state: 

Theorem 4.5. For ~ = sp(2,~) , all quotients of MR(A) are defined 

by homomorphisms, and there are no multiplicities. For n fixed, in 

the language of (4.9) the full list of non-trivial homomorphisms into 

MR(A) is obtained for I in the intervals below satisfying the 

requirement that 21 E ~ : 

(4.23) 

n (n > 2) -I < I <_ ~-2 : Sy 

n_ I < I < n-3/2 : S (n > I) 
2 -- -- a -- 

n - I/2<--I : S B when I 6 ~ , S when I ~ ~ . 

5. g = su(2,2) 

Let el,e2,e 3 be the standard basis of ~3 . Then the positive 
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non-compact roots are 

(5.1) A+n = {8 = el-e2' al = el-e3' a2 = el+e3' and y=Yr=e1+e2 } 

The positive compact roots are 

+ 

(5.2) A c = {~ = e2+e3, and v = e2-e 3} 

We have that p = (2,1,0) and the A's that define the M~(A)'s are 

of the form 

(5.3) 
n+m ~_m A = (r, -~, ) , 

with n,m 6 ~ U {0} Below we assume that n > m and write 

A+p = (z,x,y) Thus, y > 0 , and in the following, z 6 ~ + y 

throughout. 

Theorem 5.1. [8] Let Mk(A) be the generalized Verma module of 

highest weight A = (z,x,y)-p Then the subspace structure is 

defined by homomorphisms except in the case maked by Q . There are 

no multiplicities: 

i) x > y+1: 

ii) 

z < -x : 

-x < z < -y-1 : 

-y<z<y 

y+1 < z < x-1 

Z = X 

x+1 < z 

None 

S 
7 

: Sa2 

: Sal, Sa 2' SalSa 2 

: None 

: S B 

x = y+1: 

z < 1-x 

1-X < z < x-1 

Z e X 

x+l < z 

: None 

: Sa 2 

: SalSa2 

S B , : SalSa2 
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iii) y = O: 

z < -x : None 

-x < z < -1 : S -- y 

I z = : Sal S~2, S~1S~2, S~SalSa2(Q) 
I< <x-1 z _ : S~1,S~2, S~ISa2 

z = x : SalSa2 

x+1 < z : S B, -- S~ISa 2 

(x > 2) 

I. 

2. 

3. 

4. 

5. 
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ABSTRACT 

The technique of reduction of tensor products V Q W of ~- 

modules (~ being a reductive complex Lie algebra), V being semi- 

simple finite-dimensional, by means of tensor calculus in the 

enveloping algebra U of g is exposed. It leads to considertations 

on Galois extensions of the center of U by the Weyl group of ~. Its 

use in view of the study of the unitarizability of ~o-modules~ ~o 

being a real form of g is indicated. \ 

INTRODUCTION 

The objects and techniques presented here have been used by the 

author as tools for the characterization of the unitary dual of some 

semisimple real Lie groups or families of them, among which the con- 

formal group [10]. They have grown up slowly: at the beginning there 

were just tricks and shorthand notations, used to shorten lengthy 

calculations inside enveloping algebras. As the algebras grew bigger, 

the tricks grew bigger too, yielding a formalism of U-valued tensor 

calculus. The computational power grained by this formalism has to do 

with producing formulas on the reduction of the tensor product 

V ~ W of ~-modules into isotypic components, formulas which do not 

depend on the weights of a Caftan subalgebra on V and W. One is 

then lead to considerations on some rings of matrices with entries in 

U, homomorphic to End (V ~ W) ; solving the eigenvalue problem for 

such matrices leads to an algebraic extension of the center Z : An 

algebraic extension which can be used as a parametrization of Z, 

quite easy to manipulate for either finite or infinite dimensional 

~-modules (which is not the case for the dominant weight formalism). 
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Thus, what first appeared as simple tricks related to particular 

algebras has been developped to a quite general formalism, which we 

shall outline here. 

The paper's organisation is the following: 

Sac. I is devoted to present the notations used and the motivations 

for this study, which concern the unitarizability problem. In Sections 

2 and 3 the construction of the unitary dual of the Lorentz Lie alge- 

bra is sketched and the techniques used are discussed, to extract 

generalizable features which lead to tensor calculus. In Section 4 

(theorem I) the tensor formalism of the tensor product reduction is 

introduced; it uses spaces of intertwinning operators between ~-modu- 

les, denoted Hom (~(V),U)-thisis a notation often used here. Section 5 

discusses why and how to extend Z, and in Theorem 2 this extension 

is explicitated, in a condensed form, for classical Lie algebras. 

Section 6 gives hints about the techniques used to obtain theorem 2, 

which lie upon exterior tensor calculus. Section 7 concludes with 

some remarks. 

The talk effectively given at the Symposium contained one more 

example (the dual of sl(2,~) which has been omitted, to add Sac. 6, 

judged more important. 

I would like to thank Professors Doebner, Dobrev and Heidenreich, 

as well as Mrs. Illgauds for having so well organized our stay in 

Clausthal. Also I would like to thank Marie-Th~r~se Rochet for her 

help to the realization of this manuscript. 

I. In all what follows ~ will denote a reductive complex Lie 

algebra, U or U(~) its enveloping algebra, Z or Z(~) the 

center of U ' ~o a real form of g with Cartan decomposition 

~o = ~o ~ ~o and, by complexification, g = k ~ £ , k being the 
-- -- --O 

maximal compact subalgebra. A representation of g or a g-module 

(indistinctly) will be a couple (R,W) where W is a complex vector 

space and R a Lie-algebra-homomorphism from ~ to the Lie algebra 

gl(W) ; by restriction, (R,W) is also a go-mOdule. The extension of R 

to an associative-algebra-homomorphism from U to the algebra of 

linear self-mappings of W, ~(W), will be again denoted by R. When 

there is no risk of confusion we shall write Yf instead of R(Y)f for 

Y6U, f6W. The notation (z,V), (~',V') that is, a small greek letter 

in the first place, will always denote finite dimensional semisimple 

g-modules. (ad,~) will denote the adjoint; £ being a k-invariant 

subspace of ~, the corresponding factor of (adlk, ~) will be denoted 
i 

(~,~) 
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Tensor products of ~-modules will be broadly used and denoted 

(RQR', WQW') = (R,W) ~ (R',W'); the reader is supposed to be 

acquainted to definitions and elementary properties of them, as well 

to elementary tensor calculus, in particular the Einstein summation 

convention, that is FAA = EA6I, B6I, A=B FB A for every monomial 

expression F, the summation range of A being some fixed finite 

set I. When a metric tensor is available, no distinction of upper 

and lower indices will be made, that is the Feynman summation con- 

vention will be used (this concerns sections 2 and 3). 

The unitarizability of a go-mOdule (R,W) is closely related to 

the reduction of tensor products of k.modules, k ~ ~ being a Cartan 

decomposition of ~, more precisely to the reduction of (p,p) ~ (~,V) 

for arbitrary V. Indeed, assume that W is ~-finite, that is, every 

isotypic k-invariant subspace of W has finite multiplicity: since 

the restriction of R to k is unitarizable, one can express W 
-o 

as some completion of W = ~i(~e Vi,~), with Vi, ~ and Vi, 8 

equivalent simple k-modules, Vi, ~ and Vj, 8 nonequivalent for j#i; 

W has a k -invariant prehilbert structure (which is not unique: 
-o 

multiplying by a positive number the restriction of the scalar product 

to some self-dual V does not affect k -invariance) and there is 
i,~ -o 

no loss of generality in identifying W to W (take, e.g. W = R(U)f 

with f6V. that is, }I monogeneous), evacuating thus any topological 

considerations. 

It is clear that R is unitarizable iff, for every i, ~, for 

every f6V one has 
i;~ 

(1) (R(Y)fIR(Y)f) = (flR(Y*Y)f) > O 

for every Y6g, the involution Y ÷ Y* being the antilinear extension 

to g of the principal Lie algebra antiautomorphism of ~o : this is 

the transcription of ~o-invariance of the scalar product, already 

satisfied by Y6ko ; if, moreover, W is simple, the scalar product 

is unique up to a factor, and it is positive definite iff R is 

unitarizable. 

It should be immediately pointed out that a direct approach of 

the unitarizability problem is outside the main stream of recent 

research in this topic, most probably because the positivity of 

generalized matrix elements of the form (I) seems quite hard to 

establish, noncommutative calculations inside enveloping algebras 

becoming quickly repelling. However, it fits for small algebras, 

like sl(2,~) [I], [2] and s__oo(3,1) [3], and the use of tensor calculs 
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smoothens the way for more general cases [4]. 

The general scheme of the direct approach consists on observing 

that the linear span of R(Y) for Y6p, f6V = Vi, e is homomorphic 

to p Q V as a k-module, hence the k-content of W consists of a 

lattice of points which can be granted with some (total or partial) 

order, every point of the lattice corresponding to a k-isotypic 

component. One can then look for necessary conditions, in terms of 

algebraic relations between R(Z(g)) and R(Z(k)), or, equivalently, 

geometric relations between R(Z(g)) and k-lattice, by taking elements 

of Z(g) which can be expressed as linear combinations of Y*Y's for 

Y6U(~) ; and for sufficient conditions by examining for which isotypic 

components V one can write 

(2) (f{f) : Ei(filfi) ' fi 6 V i 

with V. < V with respect to the lattice's order for every occurring 
1 

i , so that explicite checking of positivity at the remaining pointS 

is sufficient. To work out these topics one has to dispose of adequate 

tools so that the required calculations inside enveloping algebras can 

be carried out. 

2. We shall begin by exposing a classical example, the Lorentz 

Lie algebra ~o = --s°(3'I) = --ok ~ £o with --ok = __s°(3) ; for sake of 

brevity there will be no calculations, but sufficiently enough inter- 

mediate results so that the reader who desires to check may easily 

do so. 

Let {Ji,Kj}i,j = 1,2,3 be a basis of ~o' {Ji } a basis of ~o' 
with commutation relations: 

(3) [Ji'Jj ] : - [Ki'Kj] = Sijk Jk 

[Ji'Kj ] = [Ki'Jj] : Sijk Kk 

being a completely skew-symmetric tensor with 

The principal antiautomorphism is given by 

ISijkl = I or o. 

(4) (Ji) * = - Ji (Ki) * = - Ki 

We shall introduce 3-vector formalism to get rid of indices i, so 

that the casimir element w of k is given by 
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(5) w = J*.~ = - . = - J. J. = w* 
1 1 

and the spanning elements of Z(g) by 

(6) a J*.J K* ~ ÷ + ~ J a*; = - . = K . K -  . = b = J.K = b* 

One can define another 3-vector element in U(g_o ) : 

(7) K ^ ~ : (K A ~)i = 8 i j k  Kj  Jk 

satisfying 

(8) K. (K A ~) = Cij k I/2[Ki,Kj]J k = W; 

Moreover, the following relations hold in U: 

2 ÷ (9) 1/ [w,K] = K - ~ ^ 

(lO) 

= ( ~ ,  A ~).~ = b 

I/2[w,~ ^ J] = -Kw + ~b = -ad(I/2w). (ad(I/2w)-1)(K) 

Consider now simple g-modules (R,W) such that 

(11) W = Q2j6N Wj; Wj = Ker(R(w)-(j2+j)l), dim Wj < 

that is Wj is the isotypic component of the 2j+1-dimensional simple 

k-module (wj,Vj), j being the maximal eigenvalue of wj(J3. -~). 

Since R(w) is diagonalizable and its eigenvalues determine the iso- 

typic component, equations (9) and (I0), together with [w,~] = O 

provide a system of equations in R(U) c~ (W), which enables to write: 

÷- K s (12) R(K) = ~+ + ~o + K ; i Wj c Wj+~I 

defining thus transition operators from each k-component to another 

one, or, equivalently, reducing the tensor product ~ O Wj. The 

operators K~ are defined componentwise, that is by their action on 

each W.: 
3 

( 1 "3) R(I/2 ÷ [w,E] ) 

W. 
3 

-~+ -~ 
= K . (j+1) - K. (j) 
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(14) R(I/2[w, [I/2w,~] ] ) 

W 
3 

~- j2 = ~+. (j+1) 2 + . 

Writing K,J instead of R(K), R(J), one gets: 

(15a) K+. (2j+I) . (j+1) = K. (j+1) 2 - K ^ ~. (j+1) + J.b 

(15b) K . (2j+1).j = ~.j2 + ~ ^ j + ~.b 

which define completely E ! when j(2j+1) ~ 0 ; for j = O one must 

have K- = ~o = ~ = O and for 2j+I,K- = 0 , so that the transition 

operators are always defined. 

Moreover, one obtains from (15b), using (5), (6) and (8): 

+ +- .4 j2 b 2 " (16) -(2j+1).j K.K = 3 - (1+a) - 

Let us now investigate unitarizability. First of all one must have 

(K~)* = - K?el because of go-invariance of the scalar .Product- Next, 

~. one sees that [k,Ke.K ~] = O, so that does not vanish only 

if ~+6 = O, hence K .K = K.K ; 

Equation (16) then yields, for every ~ 6 W : 
3 

(17) (j4_j2 (R(a)+1)-R(b) 2) . (~I~) =(2j 2+j) (~I (K-)*-~-~) 

= (292+9)Zi(K71<01K71~p) • 

Now R(a) and R(b) must be real numbers, so let R(b) = I~, 

R(a) = -I÷~2-12 be a parametrization of them (the change 

(I,~) + (-I,-~) does not affect R(Z)) , with l~b £ ~, so that (17) 

becomes: 

(18) (j2-~2). (j2+12). (<01~)= (2j2+j) Ei(KTlq01K~.<0 ) 

By induction one sees that positive-definiteness implies that 

(j2-~2). (j2+12) > O for every j such that Wj DKer K_ = {O}. If Jo 

is the lowest value of j , the second member must vanish, so that 

one must have, say, ~ = Jo" Since R(b) is real, when Jo ~ 0 I must 

be real also, so that for Jo ~ O positive-definiteness is granted 

for every j , and the ~-lattice of isotypic components is Jo + IN. 

For Jo = O the k-lattice may reduce to one point, j = O, (the 

trivial g-module) obtained for I = -/:~, ~ = O ; otherwise unitarizabil. 

ity is equivalent to I + 1 2 > O which implies j2 + 1 2 > O for every 
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J > Jo = 0 and the k-lattice is again Jo +IN. Notice that small 

imaginary values of I still give rise to unitarizable modules: this 

is the complementary series. 

3. This brief sketch of Na[mark's classification [3] needs some 

comments. First of all, this is a prototype of th e scheme exposed in 

section I: direct investigation of positive-definiteness of the 

scalar product, and classification principle involving algebraic and 

geometrical considerations on R(Z) and the k-lattice. It should 

immediately be pointed out that one cannot expect formulas like (17) 

to hold at abitrary points of the k-lattice in the general case, 

because the commutant of k in g is not abelian in general. 

A point to be stressed is that the exposition above does not use 

any considerations on Cartan subalgebras of g or k , that is the 

spectrum of J3 plays no role at all: only the spectrum of w is 

needed. This seems to have been overlooked by Na~mark himself in [3] 

so that his calculations are quite lengthy; however, he needs J3 to 

construct explicitly representations on functional spaces, so that the 

only grief is that he has not opened wide doors for future generalizat- 

ions. Indeed, this is a quite general feature, concerning not only 

s_~o(3) (Racah's multiple-j-symbols are a good example of global calcu- 

lus), but compact subalgebras of real Lie algebras in general: Vogan's 

classification of the linear dual of real semisimple groups [5] uses 

global considerations on k-submodules. 

Another point is the following: the full set of the commutation 

relations of g has not been used, except in order to express K.K, 

K. (KA J), K.K in terms of a,b,w and j . Up to then only commuta- 

tion r~ations of type [U(k),U(g)] have been used; in particular, the 

only thing used to define the transition operators K~ is that they 
1 

behave like 3-vectors under k . Let {e i} be an orthonormal basis 

of the k-module Vl ~ ~3 : a U-valued 3-vector, say K , can be defined 

as a homomorphism K of ~-modules from V I to U , such that K i = 

K(ei) , that is, K 6 Homk(VI,U). One then has: 

Proposition: Let ~ be-any Lie algebra containing k = s__oo(3) , and 

let K 6 HOmk(V1,U(g)), For every g-module (R,W) such that W admits 

a direct sum decomposition as a k-module into isotypic components 

Wj ~ Uj QVj (uj being a k-trivial k-module, labelling multiplicity, 

and V. the (2j+1)-dimensional simple one) there are three elements 
I 

K + , ~O, K- in HOmk(Vi,R(U(g))), such that K~(ei)Wj c Wj+~I , the 

defining formulas of K~(ei ) = K i being those of section 2. 
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This result has been used by the author to determine the unitary 

dual sl(3,~) [6] and s_~o(3,2) [7]. It generalizes to any Vj - the 

defining formulas are of course different - and to any k (at least in 

what concerns the existence assertion). 

Before going to generalizations, let us discuss another point. The 

three-vectors K, K ^ ~ and ~ b = (K.J)~ belong elementwise to p.U(k), 

while the K~ belong elementwise to R(p) .R(U(k)), that is they can 

be defined respectively as elements of HOmk(V 1,p.u(k)) , HOmk(V 1,R(p). 

R(U(k))). On the other hand, consider the three mappings g, M, JJ, 

sending the g-module~(V I) ~ V I ~ V I to U(k), such that if Eij is a 

basis of ~(V I) one has 

(19a) 

(195) 

(19c) 

g(Eih) = gih 

M(Eih) = Mih = Sihk Jk 

JJ(Eih) = Ji Jh 

g being the 3 x 3 metric tensor which is ~-valued or U(~)-valued, 

since ~ is canonically imbeddable in U(k) . All of them belong to 

HOmk(~(V1),U(~)) as easily checked. Now, one has 

(20) Kh = Ki gih ; (K ̂  J)h = -Ki Mih ; b Jh = Ki Ji Jh 

and this strongly suggests matrix multiplication. Indeed One can show 

that H = HOmk(~(V1),U(~)) has a ring structure under the multiplication 

sending H x H to H: 

(21) (x,y) ÷ x.y ; (x.Y) ih = Xik Ykh 

The unity element of H is g and if M is a right U(k)-module 

then HOmk(Vi,M) becomes a right H-module; in particular one can take 

M = £.U(~), K i 6 M and (20) shows that the different 3-vectors used 

up to now can be interpretated as images of the same mapping, K, 

multiplied on the right by elements of H. 

When one goes to g-modules (R,W) one can define similarly R(H) 

by substituting R(U(k)) to U(k) in the definition of H. Full diago- 

nalization of w sends R(w) on j2+j for every j , and one can 

write for every j : 

+ + ~ (22) K~(ei) : R(Kh)R(le(J)ghi ~(J) Mih (J)Jh Ji ) 
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with adequate coefficients l~(j) . This means that the reduction of 

Q Wj into ~Wj+~I is effected by means of a partition of unity 

in Rj(H), Rj being the restriction of R of k to Wj , or, in 

other words, for every j, Homk(~(VI),Rj(U k) is isomorpic to 

Endk(V I × Wk). This feature is also generalizable. 

Last but not least, one must observe that K~ and the corra- 
l 

sponding partition of unity can be defined for any (R,W) = ~j(Rj,Wj) 

but not in ~.U k or in the ring H themselves. This is due to two 

things: first j is not in U(k) , secondly division is not admitted 

(for instance, Jib(w) -I = K~ has no meaning in U). There is a simple 
1 

method to discard this annoyance: one can consider the rational ex- 

tension Rat Z(k) of Z(k) to its field of fractions, its (twofold) 

galois extension by j, Z(k)=Z(k) [j]/(j2+j-w) and the combined one 

Rat Z(k) ; then extend U(k) to, say, Rat U(k) = U(k)~Z(k) Rat Z(k). 

The partition of unity can then be defined in the extended ring 

HOmk(~(Vi),Rat U(k)). The analog of (22) can then be written in 

£.Rat U(k) by dropping symbols R in (22) so that K~ is defined in- 
- ' 1 

side £.Rat U(k); finally, U(g) itself can be extended by introducing. 

[j,K~] = ~K~. Working with such extensions enables to avoid back-and- 

forth reasonments from enveloping algebras to representations and vice- 

versa; however, if the final step concerns representations, formulas 

must be carefully handled to avoid dividing by some element of ~(k) 

which is sent to O . This feature is also subject to generalization. 

4. Let us come now to the generalization promised. One first has: 

Theorem I: Let g be a reductive Lie algebra, U its enveloping 

algebra, (~,V) a finite-dimensional ~,module, ({,V) its contra- 

gradient, Z (V) ~ V Q V the space of linear self-mappings of V , 

{eA},{eA} dual bases of ~ and V , {EA{} the basis of ~ (V) 

canonically related to them, the underlying field being ~. Then: 

1) The space of intertw~nning operators Hom (~(V),U) can be granted 

with an associate algebra structure, denoted (~)U' the multiplication, 

called the contracted tensor product (ctp) , being defined by: 

(23) (T.T') (EAB) = T(EAc ) .T' (EC B) 

If U is replaced by any associated algebra (~, such that (D,~) is 

a g-module, D(g) being an algebra of derivations of ~, the statement 

remains valid. 
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2) If (R,W) is a g-module and u÷[R(X),u], u 6 ~(W) is the 

canonical g-module structure on ~(W), there is an associative algebra 

isomorphism q from (~)~(W) to End (V xW) defined by: 

(24) o(T) (eAQf) = e B Q T(EBA) f 

3) If (R,W) is simple and finite dimensional the associative algebra 

homomorphism ooR from (~)U to End (V ~ W) through (~)R(U) is 

surjective. 

The proof of this theorem is rather elementary: it lies upon the 

definitions of intertwinning operators and of tensor products of g- 

modules for I) and 2) and on Burnside's theorem (see, e.g. [8], 

ch. XVII, 3) implying that R(U) = ~(W). 

This theorem concerns tensor products of g-modules; it is irrele- 

vant to specify that V and g lie in some bigger enveloping algebra, 

as it was the case with Cartan decompositions, though it has interesting 

applications in this topic. Notice that a couple of mutually contra- 

gredient representations needs to be introduced: this point was hidden 

in the Lorentz example because the representation considered was 

orthogonal, hence self-contragredient. The crucial hypothesis is that 

V is finite-dimensional: it is essential for both contraction of 

indices and for Burnside's theorem. But W may be any ~-module in 

part 2), finite-dimensional and simple (V need not) in part 3): both 

situations are dissymetric. 

5. The main point of theorem I is that, once V is fixed, the 

study of the reduction of its tensor products with other g-modules can 

be greatly carried out by the study of the ctp ring (~)U" Its ideals 

and its idempotents are related to those of Endg(V Q W), hence to g- 

invariant submodules of V Q W. So, the study of-algebras (~)U has 

the goal to construct a partition of unity I = Ei Pi ' such that for 

every finite-dimensional simple (p,W) the idempotent element 

0op(P i) 6 End (V ~ W) projects V ~ W onto an isotypic component. 

As already seen in the example, one must extend the center Z to do 

so. 

The technique which leads to the extension consists in estab- 

lishing that (z) u is a Z-module of finite dimension, so that every 

X 6 (~)U satisfies the equation of its characteristic polynomial, 

which is a polynomiai with coefficients in Z : indeed, there is only 
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a finite number of Z-linearly independent ctp powers of X. Extending 

Z to Z(z) so that the characteristic polynomial of every central X 

belongs to z(z) solves the problem. Z(~) is a priori dependent on 

(z,V) : one can show that there is a minimal z-independent extension 

which is a Galois one, its Galois group being the Weyl group of 

(in fact, this may as well serve as the definition of the Weyl group, 

since all this can be done with no reference to Cartan subalgebras). 

The idempotents are then constructed by using standard techniques like 

Taylor expansion of polynomials. 

Another way to see things is to say that Z is a parametrization 

of Z by some set of independent variables {xi}, so that Z is the 

set of Weyl-symmetrie entire functions on {x i} and Z the full poly- 

nomial algebra on them. If the set {x i} is specified to design some 

basis of affine functions on a Caftan subalgebra of g , this statement 

is a well-known theorem of Harish-Chandra (see, e.g. [9], ch. 7.4). 

It can be obtained, however, independently of any considerations on 

Cartan subalgebras, by using the extension techniques just described: 

the set {1}U{x i} can be defined as a basis of the complex vector space 

spanned by the roots of the characteristic polynomial C X for X 

spanning Homq(~(V),_g~.1); one can easily show that such elements 

satisfy a relation of the form: 

(25) ~ O R(w) = {(w)O1 - 2 ooR(X) +IOR(W) , 

for every simple R , w being a central element of degree 2 (in the 

example, X is -M , defined in (19b)). 

The calculation of C x and the corresponding partition of unity 

has been carried out by the author (in a paper to appear soon), in 

case (~,V) is the fundamental representation of a classical Lie 

algebra. This can be summarized as follows: 

Theorem 2: Let g = gl(N) ~, __s°(N) ~, __sp(N) ~ and (z,V) a canonical 

representation of g on ~N _ , w the Casimir element of g , and 

X 6 (~)U related to w by (25). Let m=1 if g = s__qo(2N~+1), m = 0 

otherwise. There is a polynomial C(t) with coefficients in Z , of 

degree N-m , even in t for ~ ~ gl(N), irreducible in Z[t] for 

~ s_oo(2), satisfying (26) ((t+k)@-X)AB.T(t).Bc =~Ac(t+I/2)m.c(t) 

where 6 is the Kronecker symbol, k6R a ~-depending constant and 

T(t)C(~) U the polynomial obtained by the Taylor expansion. The 

degree of the Galois extension Z of Z by the roots of C(t)=O is 

r = rank g . For every simple finite-dimensional (p,W), the set {u i} 

of roots of p(C(t)) = O determines completely p, unless g = so (2N') 
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and (C(O)) ~ O , in which case it may correspond to either p or ~ . 

One always has u -u. 6 g, and there are no double roots except for 
l 3 

= s__oo(2N') which may have t 2 = 0 as a double root. Every isotypic 

component (p',W') of V Q W has multiplicity one, and there may 

exist one component W' isomorphic to W only if ~ = s_~o(2N'+1); 

for non isomorphic W,W' the sets of roots {ui},{u' i} differ only 

by one root (if g = gl(N)), or by a unique couple of opposite roots 

(if ~ ~ gl(N)), the absolute value of the difference between the 

initial u and the shifted one being I. 
i 

Remark: The labelling of finite-dimensional ~-modules by the set of 

roots (plus a ~ sign for g = s__oo(2N')) indicated in Theorem 2 is 

.'s are almost equivalent to the labelling by dominant weights: the u I 

equal (module a fixed shift for every u i) to suitably chosen coordi- 

nates of the dominant weight. The advantage lies elsewhere: character- 

istic polynomials and Taylor plynomials exist also in infinite-dimen- 

sional representations (R,W), and so do the u.'s, while dominant 
l 

weights cannot, in general, be used. In fact, for g = s__9o(3,1)~=s__9o(4) ~ 

we have already met with the characteristic polynomial in (17) and 

(18), slightly modified: the set of roots {u i} corresponding to the 

one of Theorem 2 are {~jo,~iX} . One couple is related to the k- 

lattice. 

6. One can outline as follows the tools used to prove Theorem 2: 

once (z,V) of ~ is fixed, consider exterior powers of it, denoted 
k k 

and ^ = ^k(v), and introduce dual basis {e K} , {e K} in 

k ~k ^k(~). In order to manipulate together different powers let A • A = 

k = ]K] be called the length of the symbol K if eK6A k taking 
i i 

K6~]K]'I I N~h~]V[= being if ks°meh.indexingtheSetfact°f cardinalitYthat "~ equal to dim ^[K[, 
with ~ k ~ / Using ^ = ~k  ̂ k is an exterior 

algebra introduce the following two-row symbols: 

HK H K 
(27) [LM ] = <e he , eL^e M > 6 

which is nonzero only if IHI + IKI = ILl + IM[ ~ dim V. Using the 

properties of exterior algebra, one can develop a formalism with these 

two-row symbols, covering partial contractions or substitutions of 

indices; one easily proves, for instance, formulas like: 
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28) 

(29) 

o<lx I±lHI Ix] [vii r l u ~, L M j  

L L j  LH ~j ILl 

.(-I 
tul'IYl 

Once this formalism is established, one can define relations among 

the different spaces H k = Hom (~(Ak),u) ; in particular, for k=N,~(A N) 

is the trivial g-module, so that the mapping 

(30) z 6 Z + F(Z) 6 HN; F(z)~ = z[~] 

is bijective. Similarly H I and H N-I are isomorhic, and if X6H I, 

AA = AA C C DD [A]=]B] ]CI=]D] I belongs Y6H N-I, then ZB~ [Ct] X D YO [B~] , with = = , 

to H N. The study of the relations between the Hk's provides with 
,, ,, n 

techniaues which enable to extract X_ out of some sUitably constructed 

z , yielding formulas of type z A~ = X Au CC BB C " [BB ] YC which can then be 

transcribed to a formula of type (26), that is a contracted tensor 

product. 

The techniques involved consist in constructing operators sending 

H k in H k' , and on considerations on the algebraic structures generated 

by such operators. These structures depend on the family to which g 

belongs, so that the three families have to be treated separately. 

7. The approach of the unitarizability problem relative to the 

family ~o = so(p,2) by tensor calculus tools has been successful [4], 

and it is possible but not certain that it also gives complete results 

for algebras of arbitrarily high real rank. For the moment only partial 

results are available. The main point of this approach consists in 

using the extensions of both Z(g) and Z(k) , for g = ~ , to 

obtain criteria of positive-definiteness. 

We shall end with a comment on an apparently paradoxical situation: 

if calculating in U is difficult, then multiplying matrices with 

entries in U arises the difficulty to the square. How can one claim 

that calculations are more smooth? 

A possible answer to this objection could be that one may always 

reformulate theoretically a known situation in a new formalism, which 

may be better or worse (whatever this means) than the old one, 
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without effective gain in computations. 

However, this is not the case, because the paradox is only appar- 

ent. Indeed, for any simple finite dimensional (p,W) the isotypic 

component of W in U (resp. the Z-module Hom (W,U)) has finite 

multiplicity modulo Z (resp. finite dimension over Z) but there 

are infinitely many W with nonzero multiplicity. If x and x' 

belong to the isotypic components of W and W' , their product 

xx'6U decomposes into elements of isotypic components by following 

reduction of W Q W' . The use of (Z)U restricts to g-modules W 

which have also a nonzero isotypic component in ~(V) , and there is 

a very limited number of them (especially when V is "small"). But 

then x is a linear combination of elements of the form TAB , and 

the contracted tensor product essentially consists in discarding 

those components of W ~ W' which do not intertwin with ~ (V). Hence 

the ctp is not mere matrix multiplication, but also a trick to 

restrict ordinary multiplication in a small part of u . Therefore 

the claim of gain of computational power is at least nonparadoxical. 
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1. Introduction 

Irreducible representations of semisimple Lie algebras as well as of some 

non-semisimple ones have been known for a long time . Recently, however, 

considerable effort of many scientists has concentrated on other linear 

representations of physically significant Lie algebras . Those are so called 

indecomposable representations, in other words , reducible but not completely 

reducible . The carrier space for an indecomposable representation of a Lie algebra 

g has a g-invariant linear subspace , but its complement is not g-invariant. 

It has been pointed out that these representations might be of much greater 

importance in physical applications than it has been expected (see, for example, 

[6] ). 

Our motivation has been to try to develop an effective algebraic procedure 

that would lead to indecomposable representations of those Lie algebras that are 

of interest in physics . The natural chain of symmetries so(3) • so(3,1) C iso(3,1) 

so(4,2) has led to several papers on this subject (see [7] , [8] , [9] ) . It 

is worth mentioning that all indecomposable representations of semisimple Lie 

algebras have to be infinite dimensional , whereas it is not a necessary condition 

for indecomposability of representations of other Lie algebras (see, for example,J9]) 

The approach employed in our previous work originates at the concept of the 

universal enveloping algebra (UEA) ~ of the Lie algebra g It is an 
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associative algebra whose basis can be chosen as an infinite set of standard 

monomials , the latter being the ordered tensor products of the basis elements of 

the Lie algebra g (this is so called Poincare-Birkhoff-Witt theorem) . The Lie 

algebra g is naturally embedded in its UEA . 

The advantage of using the UEA of g instead of the Lie algebra g itself 

stems from the fact that the former is associative whereas the latter has 

multiplication defined in terms of Lie products . Moreover, it turns out that the 

left multiplication in ~ by elements of g defines a very general representation 

of g (using a slightly different language, it makes ~ a left g-module) . In the 

sequel this representation will be denoted by p . 

Since it is, in general, indecomposable , one can identify its 

subrepresentations and form quotient representations . By the abuse of the language 

we will also denote them by ~ . 

Usually, we will restrict our attention to the representations induced by p 

on ~/I , where I is a certain left ideal of ~ . Those ideals will be generated 

by a finite number of elements from ~ , say, ~l,...,~k . We will denote it as 

follows: 

I = <el,...,~k > . 

Since we are going to concentrate on representations of the Lorentz algebra 

so(3,1) , let us use the notational conventions introduced for ssmisimple Lie 

algebras . In particular , the We~l canonical basis for g will comprise h's 

belonging to the Caftan subalgebra h of g , e's corresponding to positive roots 

and e 's corresponding to negative roots . Then ~/I , where 

I = < h a - A ,...,~,... > 

is th so called raising algebra and is denoted by ~+ . Similarly , ~/J where 

J = <h~ - A e ,...,e ,... > 

is the so called lowering al~ebra and is denoted by ~_ . 

In both cases A~,... are complex numbers and are inherent in the definitions 

of ~+ and ~- Sometimes , in literature, ~+ and ~_ are referred to as 

Verma modules Infinite dimensional representations induced on Verma modules 

are very significant as it has been demonstrated in our previous work since they 
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establish a general framework for identifying the representations known in physics. 

At the same time they give new representations that have not been obtained before. 

Depending on the values of As,... , the above representations may turn out 

to be irreducible or indecomposable . In the case when they are indecomposable, 

the usual procedure of going to the quotient would lead to the finite dimensional 

representations . 

In the process of going from the general to the particular , let us choose 

the Lorentz algebra so(3,1) as an example of a semisimple Lie algebra .illustrating 

the simplicity and generality of the method outlined above . 

In the case of the Lorentz algebra , as in many others , its so(3) subalgebra 

corresponding to the rotation group becomes of special importance because of the 

role that the angular momentum beses play in physical applications of the 

representation theory . For that reason, a change of basis of ~± is required . 

Instead of the natural basis consisting of standard monomials one needs to construct 

another basis, in which the representations of so(3) take their standard form . 

We call this new basis the angular momentum basis . 

After the change of basis mathematical induction is used in order to derive 

the formulae for the representation p in the angular momentum basis . This step 

is crucial in the analysis , but the calculations are lengthy . Nevertheless, the 

results are rewarding . One obtains a very general representation of the Lorentz 

algebra and the familiar representations are recovered easily as a special case. 

2. Commutation relations . 

The angular momentum basis for the Lie algebra D 2 is given by the basis 

elements: 

D 2 : { h 3 , h+ , h_ , P3 , P+ ' p- } 

(h's correspond to the rotations in 3-dimensional space and p's correspond to the 

Lorentz boosts) with the following Lie products : 
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[ h 3 , h+ ] =+ h+ 

[ h3 ' PZ ] = Z P~ 

[ he' P- ] = [ PT ' h_] = 2p 3 

[ h+, h_ ] = [ p_ , p• ] = 2h 3 

[p3 , p ] = h 

[ P3 ' h~ ] =_~p+ 

[ p+ , h~.] = [ p_ , h ] = [ P3' h3 ] =0 

Using the above relations and the definition of the UEA one can obtain the 

following commutation relations within the UEA , that are necessary to bring the 

elements of UEA multiplied from the left by elements of g to their standard 

ordered form : 

m 
[ h 3 h_~ 

m 
[ P3 h± 

m 
[ h~ h~ 

[ h~ p~ 

m 
[ P7 m~- 

[ p, h ~ - 

[ h 3 P~ 

[ P3 P~_ 

The above 

simultaneously 

m 
] =t~t 

] :+ mpe_h~_ -1 

] :; 2mh~lh 3 - m(m-1)h~j 1 

m-i m-2 
] =;2mpT_ P3 + m(m-1)h+p+ 

] =Z 2mp~-lh 3 + m(m-I)P~ -I_ 

m-i -m(m-l)p;h~ -2 ] = ~_ 2mh~ P3 

] = T mp~ 

_ m-i ] = ~ m~p~ 

relations are valid if all upper signs or all lower signs are taken 

3. The Verma modules ~+ in the standard basis . 

In what follows we are going to restrict our attention to the representations 

induced on different Verma modules ~+ (depending on certain parameters) by the 

left multiplication in ~ It turns out that Verma modules ~_ have a very 

similar nature and give the same representations as ~+ up to an automorphism of 

the Lie algebra so(3,1) ( see [8] ) . 

As we mentioned earlier , ~+ are quotient modules of ~ modulo certain 
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left ideals of ~ . This , quite abstract definition , could be phrased in 

a different way . Let us treat the identity ~[ of the UEA of so(3,1) as the vacuum. 

Then let us consider a carrier space for a representation of so(3,1) to be 

s spanned by the states created by acting with raising operators p+ , h~ on the 

vacuum . Assume that p_ and h_ annihilate the vacuum and 

in turn , give complex numbers A 1 and A 2 

precisely the Verma module ~ corresponding 

write ~+ (A1,A2)) . 

The standard basis of 

n { XCs,n) = p~ h+ 11 

where ~ denotes nonnegative integers . 

We assume that A1, A 2 are fixed 

obtained : 

h 3 and P3 ' 

, respectively . This will give 

to A l ,A 2 ( we should actually 

+ in the explicit form is given by 

, s,n GIN } 

• Then the following relations are 

P(h3) X(s,n) = ( A 1 + n + s ) X(s,n) 

p(p3 ) X(s,n) = A2X(s,n) + nX(s+l,n-l) - sX(s-l,n+l) 

p(h_) X(s,n) = n(-2A 1 -2s - n + 1)X(s,n-1) - 2sA2X(s-l,n) + s(s-1)X(s-2,n+l) 

p(h+) X(s,n) = X(s,n+l) , p(p+)X(s,n) = X(s+l,n) 

p(p_) X(s,n) = s(2A 1 + 2n + s - I)x(s-I,n) - 2nA2X(s,n-l) - n(n-l)X(s+l,n-2) 

One can notice that the standard basis is not the angular momentum basis . 

Therefore , a change of basis is required and will be performed in the next section. 

4. The Verma modules ~+ in the angular momentum basis 

In order to carry out a change of basis from the basis of standard monomials 

X(s,n) to the angular momentum basis one has to find the p(h_)-extremal vectors 

and then act on them with the raising operator h+ with positive integral powers . 

The p(h_)-extremal vectors are the vectors annihilated by p (h-) . They 

should be the linear combinations of standard monomials having the same weight 

as far as the so(3)-representations are concerned . The most general form of such 
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a vector is seen to be : 
N 

= Z CkX(N-k,k) YN 
k=o 

where N ~ ~ Notice that P(h3)Y N 

The new basis for the Verma module 

for the so(3) - representations that give the so(3) content of 

words , it is given by : 

n n 
{ h+ YN = ~N , n,N c ~N 

By finding several of the 

and using mathematical induction , one can derive the following relations on 

in the new basis : 

= ( A 1 + N )YN and p(h_)y N = o 

% is obtained by recovering the bases 

+ . In other 

} 

p (h_)-extremal vectors (for small values of N ) 

p(h3)y ~= (N+n+ A 1 ) y§ 
n+l 

P (h+)YN = YN 

n _- n-1 
p(h_)y N n(-2A 1 - 2N - n + i) YN 

., n+l n n-1 
p(p3)y~ = -~N(-2A 1 - 2N - n + ";YN-i + BN(AI + N + n ) YN + n YN+I 

n+2 n+l + n 
P (P+)YN = SN YN-1 + BN YN YN+I 

n 
P(P-)YN = -aN (-2A 1 - 2N - n + i)(-2A I- 2N + 2 - n) YN-I + 

n-I n-2 
+ 8 N n(-2A 1 - 2N - n + i) YN - n(n-1) YN+I 

where 

2 
(A22 + (I-AI-N))N(-2Al+2-N) 

%c 
(-AI+I-N) (-2AI-2N+3)(-2AI-2N+I) 

-A~(-AI+I) 

(-AI-N)(-AI+I-N) 

Since the new basis is determined by two parameters (N,n) , we can represent 

it graphically as a lattice ~ x ~ in the 2-dimensional plane . If the vertical 

axis of the rectangular coordinate system is chosen to be representing N and 

the horizontal to be representing n , then the action of the operators p( ) can 

be pictured as follows: 
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p (h 3) p (h+) p (h_) p (p3) p (p+) p (p_) 

The key to identify the invariant subspaces of ~+ (if they exist) is to 

analyze the action of the operators p ( ) for various values of A 1 , A 2 , N and 

n . In other words , one has to investigate what happens to the matrix elements 

of p when A 1 ' A 2 ' N and n are changed . In particular , our attention 

should concentrate on those values of A and A for which ~ = 0 for 
1 2 N 

some N . Namely , it happens when N = -A 1 + 1 ± iA 2 ' N = -2 A1 + 2 and when 

N = 0 . At the same time careful attention should be paid to singularities of 

N and ~ N that occur when the denominators of ~ N and B N vanish , 

i.e., when N = - A 1 + 1 , N = -A 1 + 3/2 , N = -A1 + 1/2 , N = -A 1 . As it 

was demonstrated in our previous work ( see [8] ) , if A 1 and i A 2 are both 

integers or half integers , one obtains invariant subspaces and if singular matrix 

elements exist , they can always be contained within invariant subspaces , so the 

quotient spaces still carry representations with finite matrix elements . One has 

to point out that in certain cases the values of ~ N and 8 N depend On the 

order in which the limits of parameters A 1 ' A 2 and N are taken . For a more 

detailed discussion of this feature , see [8] . 

The matrix elements of p depend not only on the values of e N and B N " 

They also incorporate certain factors that are functions of n , In this way , 

new invariant subspaces are obtained by solving for n the following equation: 

-2 A 1 - 2N - n + 1 = 0 

In the graphical presentation of p , the above equation leads to a broken 

line that separates the invariant subspace situated above and to the right of this 

line. The invariant subspaces that arise due to the vanishing of a N are 

situated above horizontal lines . 

AS an example , take A1 = -3/2 ' ~2 = i/2 . Then , we obtain C( N = 0 for 

N = 0 , 2,4 , and ~( N becomes singular for N = 3 . This can be graphed as follows: 
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N' 

X X X X. )< ,'s X 2, )',. 2, 

, , , | 

0 1 2 3 4 n 

Denote: W = sp { y~ , n e ~ , N 4 } 

V = sp { y~ , N = 1 , 2 , n e ~ } 

s= sp { y~ , n 4 } {y~ ,n 2 } 

1 2 3 0 
F = V/S = sp { y~ , Y0 ' Y0 ' Y0 ' Yl ' y } 

where sp { ... } me~s the C - linear span of { ... } 

~ey are the carrier spaces for s0(3,1) - representations . In particular , 

p induces an infinite dimensional irreducible representation on W , ~ infinite 

indecomposable representation on V , ~ infinite dimensional irreducible 

representation on S ~d finally , a finite dimensional irreducible representation 

on F . The so(3) content of those representations c~ be easily recovered once 

the bases are given . 

Let us explicitly evaluate the matrix elements for the finite dimensional 

quotient representation on F . 

012g   
F : { Y0 ' Y0 ' Y0 ' y ' y ' y } 

8 0 = i/3 , 81 = 5i/3 , s o = 0 , el = 4/9 
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e (h3)= 

p (h+) = 

p (h_)= 

m 

-3 /2  

-i/2 

1/2 

3/2 

-1/2 

1/2 
-- u 

0 0 0 0 0 0 

1 0 0 0 0 0 

0 1 0 0 0 0 

0 0 1 0 0 0 

0 0 0 0 0 0 

0 0 0 0 1 0 

0 3 0 0 0 0 

0 0 4 0 0 0 

0 0 0 3 0 0 

0 0 0 0 0 0 

0 0 0 0 0 1 

0 0 0 0 0 0 

P (P3)= 

P(p+)= 

(p-)= 

-i/2 0 0 0 0 0 

0 -i/6 0 0 -8/9 0 

0 0 i/6 0 0 -4/9 

0 0 0 i/2 0 0 

0 1 0 0 -5i/6 0 

0 0 2 0 0 5i/6 

0 0 0 0 0 0 

i/3 0 0 0 0 0 

0 i / 3  0 0 4/9 0 

0 0 i/3 0 0 4/g 

1 0 0 0 0 0 

0 1 0 0 5i/3 0 

0 i 0 0 -8/3 0 

0 0 4i/3 0 0 -8/9 

0 0 0 i 0 0 

0 0 0 0 0 0 

0 0 -2 0 0 5i/3 

0 0 0 -6 0 0 

This representation is obtained from the 6-dimensional representation listed 

in our previous work (see [8]) by an automorphism of the Lie algebra : 

h3 + -h3 ' P3 ÷ -P3 , h+ ÷ h- , h- + h+ , p+ + p_ , p_ ÷ p+ 

The above example is very representative and it can be seen that other integral 

and half-integral values of A and A follow the same pattern . 
1 2 

In order to make a connection with the Gel'fand-Naimark basis (see [4],[5]) 

one more step into abstraction is necessary . It will be performed in the section 

that follows . 
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5. Connection with the Gel'fand-Naimark basis. 

Inspection of the representation p in the angular momentum basis shows that 

the formulae are valid for all integral values of n and N . This clearlY 

implies that we are dealing with an extension of the UEA to all integral exponents. 

Then the graphical presentation of { ~N ' N,n c Z } 

n lattice Z x Z . Notice , that { YN ' N e ~, n e Z 

subspace , ~hat has another invariant subspace spanned by 

In a shorthand notation one could put it as follows: 

is a two-dimensional 

} spans an invariant 

n 
{ YN ' N,ne iN } . 

sp { zx z } > sp { z xm } ~ sp { ~ xm } 

The standard so(3,1) representations are obtained on the quotient space 

sp { Z x ~ } / sp { ~ x ~ } . The following picture emerges on Z x ~ . 

/ 

N 

N = i i 2 - i I + 1 

1 
n = -2 A 1 + 1 n 

Let us now make the following redefinition of parameters: 

n = m - i I - N , N = L - /~o , A 1 = LO + 1 , A 2 = i~l 

where m,~, L , and ~l take on the familiar values of ref. [4] . This definition 

yields the connection between the Gel'fand-Naimark basis expressed in te~s of 

the parameters m , ~ , ~, ~L and o~ basis expressed in terms of the parameters 

n , N , A 1 , A 2 . In fact , let us introduce the following renormalized basis 

elements: 

m-1 

U -i/2 ~ -las 1/2 n I Z, ~=( (~-k)(L+k+l)) (2S(2S-1)) YN 

k= -Z S=~O+I 



290 

where all the old parameters N , n A 1 , A 2 are expressed in terms of ~ , m , 

Go , ~, as indicated above ,. In the basis I~ , m > , we obtain exactly 

the same formulae as Gel'fend (see [4]) and Naimark (see [5]) for so(3,1) 

representations . 
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Introduction. 

The aim of this paper is to introduce the reader to some recent 

developments [1,~ in the representation theory of the conformal super- 

algebra and supergroup. The emphasis is on the reducible (and indecom- 

posable) representations which are physically relevant and on the related 

invariant differential operators. 

The paper is essentially selfcontained. In Section 1 we recall the 

definitions of a superalgebra in general, of the conformal superalgebra 

= su(2,2/N) , of its eomplexifieation sl(4/N;~) and of the corres- 

ponding supergroups G = SU(2,2/N) and SL(4/N;~) . In Section 2 we 

introduce the elementary representations (ER) of ~ and G using an 

indexless realization of the inducing irreducible finite-dimensional 

representations of SL(2,C) and SU(N) . In Section J we demonstrate the 

lowest weight module associated with an ER and (adapting results of Kac 

[3]) the reducibility conditions. Then we present a canonical procedure 

(introduced earlier for the ordinary real semisimple Lie algebras and 

groups [4] ) for the construction of the invariant differential operators. 

1. Preliminaries. 

1.1. A superalgebra is a ~2 - graded algebra ~ = ~0 e ~l (i.e., 

if X E ~ , Ye ~p , ~,~ ~ ~2=~0,i], then XY e ~÷~ ). A Lie superalgebra 

is a superalgebra ~ = ~0 e ~i with a bracket [ , ] satisfying : 
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rx,Y] [Y,X], x ,% ,Y,% , ix,  [Y,Zj] : [[×,yj,zj + {-1),p [Y,[X,Zjj. 
The L ie  s u p e r a l g e b r a  ~ = s l ( 4 / N ; ~ )  w i l l  be r e a l i z e d  as a m a t r i x  

s u p e r a l g e b r a  

b C 25  = [ y  = (a b ) ;  (0 0 ) ~  ~ (c O ~)@~l ; s t r Y  = t r a  - t r d = D ]  , (1)  

where a , b , c , d  are  4x4 ,4xN ,Nx4 ,NxN m a t r i c e s  r e s p e c t i v e l y .  

The L ie  s u p e r a l g e b r a  s u ( 2 , 2 / N )  i s  the  f o l l o w i n g  (Nl+SN+15) - 

d i m e n s i o n a l  r e a l  noncompact  form o f  0 ~  : 

= s u ( 2 , Z / N )  = Y 6 ; YaOO+( - i )a~Y a = 0 ; ~ =  ~ , 
0 ~ 

where Y+ i s  the  He rm i t ean  c o n j u g a t e  o f  the m a t r i x  Y (The m a t r i x  CO 

d i f f e r s  f rom the  u s u a l  c h o i c e  d i a g ( l l ; . , . ~  ,~ f l )  by a r e a l  o r t h o g o n a l  

t r a n s f o r m a t i o n . )  The even p a r t  o f  @ i s  the  s u b a l g e b r a  

~o = s u ( Z , 2 ) e u ( 1 ) e s u ( N )  (3)  

1 . 2 .  We s h a l l  c o n s i d e r  r e p r e s e n t a t i o n s  induced  f rom the  s o - c a l l e d  

max imal  p a r a b o l i c  s u b a l g e b r a  

= ~t e 0 t e %  , (4)  

where O~ i s  the  1 - d i m e n s i o n a l  ( d i l a t a t i o n )  s u b a l g e b r a  

!) O~ = O~ o = l.s. 10-~Z: ; (5) 

kO 0 

4~1@0C is the centralizer of Ot in 0~ ,~=~o=sl(2,C)@u(1)Osu(N) ; 91. is 

the subalgebra comprised of the negative restricted root spaces with 

respect to ~. , explicitly 

/ o :) {ti°°) ) 1% = ~ ~) 1 . s .  " 0 0 ; / ~ = l , . . . ,  , (6 

k.-ip 0 0 N 0 0 

d iml~=4N+4 ; ~ g e n e r a t e s  the  s p e c i a l  s u p e r c o n f o r m a l  t r a n s f o r m a t i o n s .  

F i n a l l y  we ~Jr i te  a d e c o m p o s i t i o n  o f  ~ : 

= % e , % e ~ e ~  , ( 7 )  

where ~% is the  subalgebra (generating supertranslations) comprised of 

the positive restricted root spaces with respect to O~ 

1.3. The Lie supergroup SL(4/N;~) can be realized as a matrix group 

with elements 

even 

g = (gmn) = \odd 

de t (A -BD-1C)  = detD 

e v e n /  N = ' gmn 6 A a (8) 

where ~ = ~e e~ I is a complex Grasamann algebra ~ith eountably many odd 

generators, so that any element of ~ is a finite sum of monoms of these 

generators. (For the notions of supermanifold and Lie supergroup see [5].) 
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The conformal Lie supergroup SU(2,2/N) is a real form of the Lie 

supergroup SL(4/N;~) 

G : SU(2 ,2 /N )  = { g~_SL(4 /N ;~ )  ; g*~vg = ~ }  ; (9)  

~Jhere g:~ = ga*~ ~ith * - involution in ~ ; *o* = id 

In a neighbourhood of the identity G = exp ~(~) , where ~(~) = 

= ~o(~9)O~oO~ I (~9)0~ is the Grassmann envelope of ~ with respect to~ 

Superspace can be i d e n t i f i e d  w i t h  the  subgroup o f  s u p e r t r a n s l a t i o n s  

#h i ch  i s  p a r a m e t r i z e d  by 4 even and 4N odd e lemen ts  o f  ~ 

: x : , x.=~, ~ ~ ,  ~ . - - -  ) 

- ~  ~. x:~,x-, ~ea~, =e~e~, k=l,. . . 'N;t 
~,~ =~,~; J 

The left action Of G on ~ gives 

-~ - l ~  ~ ( d , g ) ,  or g : ¢0~ p ( ~ , g )  , g n = ngp 

[ ~here ~,n~ e X ; ~.c 6 X ¢ - ~ ~e~; ~goxZ-n(xZ):O; n(~)  nilpotent part of 

e~o(R) } and p(~,g) is an element of the stationary subgroup P of 

the origin in superspace, P : MA~P ~ith A : expO&(~), JT : exp%(~), and 

MA is the centralizer of A in G. In the matrix realization '(8) 

fi ! o oo/  PI = _ ; 

0 e ~/~ 

(! ° °o) 
^, (~; 0 0 

" 0 

u = ~Z 

0 

A = ~ - t  

0 

# ~  S L ( 2 / 0 ; $ )  ( i . e .  ~@ 6~o  , d e t e = l )  ; 

0 | , y = o , 1  

/ 
h 

, u 6 S U ( N / O ) ~ ;  

J 

; ~ ( t )  = 8 £{/~ 0 , t ~ o ( ~ ) ( m o d 2 ~ )  

0 e ~{ 

2. Induced representations. 

2.1. We consider a class of P-induced representations of the con- 
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iformal supergroup G and its Lie superalgebra called elementary rep- 
resentations (ER). They are induced by the finite-dimensional irreducible 

representations D~ of HA (J~ acts trivially) : 

= Jl 'J2 "; d ; z ; rl, ,rN_ 1 

where 2Jl,2J2 ; rl,...,rN_ 1 are nonnegative integers indexing the rep- 

resentations of SL(2,~) and SU(N) (the integers ml~-m2X-...-~mN_l~-O 

such that rk=mk-mk+ 1 are used also); d (the 8cale dimension) end z 

are complex numbers indexing the representations of A and U(1) resp. 

For the ER of G the relation 

N-1 
z + Jl J2 + (2/N)~-- m i ~ ~ (14) 

i=l 

should hold. For N=4 we may consider representations of the factorgro~p 

G/U(1) ; then z=O 

It is convenient to use an indexless realization of the finite- 

dimensional irreducible representations of SL(2,C)xSU(N) (cf. [6]) 

instead of the more standard tensor fields realization. The represen- 

tation space W~ is given by 

W% = [ polynomials ~ : ~x~2xU(N)--~ ~ ; 

' -/-(4K -:~k-~) u k ~(~z,~7;...eL(a~-4~'~uk...;...e ...) = (15a) 

~ N-i 
i4i2~ expi ~"(c<~,-c~K..~ )m R ~(z,~;u I fiN) ; _- . , . . . ,  

k=l  

z = (~), E = (Zl,E2); ~ e C ;  (uk) i = ~L~iN_k+l , ~esu(a); 

Dik ~- (uk~i ~ _~i~k)~ = 0 , l_Zk z iZ_N } . (15b) 

The polynomiality requirement above can be equivalently replaced by the 

set of equations 

rk+l • . 
D i i + l ~ =  0 = ( * ~ ) 2 j + l ~  = ( ~  ) 2 j + l ~  ; i = l , 2  . . .  N - l ,w  E Sz W~Z~-W~4--~ (16) 9 3  ' ' ' 

The set  o f  equat ions  (15b) (or  (16) )  imply  t ha t  the elements of  N2C 
can be made f u n c t i o n s  of  at most N-1 arguments,  i . e .  up to equ iva lence  

~= ~(u  i N - l )  , . . . , u  ; they are s t i l l  sub jec t  to the remain ing equa t i ons .  

The r e p r e s e n t a t i o n  Djz r ac ts  in W~ accord ing  to 

( D j z r ( ~ O ' ; ~ t ) u ) ~ ) ( z , E ; . . . u k . . . ; . . . u k . . . )  = (17) 

~-4 d "-~ ~, ~-~ = e x p ( i t z / 2 ) ( - 1 ) ~ P ~ ( v 3  v~ z ,z !z  ~ ; . . .  u . . . ; . . . u ~  . . . )  

~ z + J l -  J2 + (2/N) ~ mi(mod2).  
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The representations D~ on W~ can be extended to representations 

of the even supergroup SL(2/O;~)xSU(N/O) 

2.2. The ER are defined by the follo~ing covariance property in a 

space ~M of W~ - valued smooth in a certain sense functions on the 

supergroup 

F(gman) = D~l(ma)F(g) (18) 

and the representation T.~ is given by the left regular action of G . 

Obviously the ER can be realized equivalently by functions on the 

homogeneous space G/P = XL]~ c , or in a space of functions on the 

superspace )C (i.e. superfields) with certain asymptotic behaviour at 

infinity. 

Another useful realization is provided by the ~0- valued functions 

F (g ,IT(I ) ,E(~-), u) 
# # 

= ' ( ~ ( ~ ) ) s  = ~ a 2  ' 
(19) 

s a t i s f y i n g  the set  o f  Eqs. ( 1 5 b ) , ( 1 6 ) .  Note t h a t  

_ = u )  ' gH B ( 4 )  ~ = (011z) , , ~ (S_ugH~ n) (gH)_ ,S_" exp , _ n~J~" (20) 

where ~ i s  a Car tan suba lgeb ra  of  ~ ,  ~ =0~@~, ~ i s  the Car tan 

suba lgeb ra  o f  q1& . 

From now on we r e s t r i c t  o u r s e l v e s  to the e lemen ta ry  r e p r e s e n t a t i o n s  

of the conformal superalgebra ~ defined in a suitable space of 

functions by the infinitesimal version of (18). We only note that the 

elements of the resulting ER spaces (i.e. the superfields) have entirely 

different nature from their supergroup counterparts [5,2]. 

3. Invariant differential operators. 

3.1. The ER are generically irreducible. We solve the problem of 

finding the reducible ones among them by adapting results of Kac on the 

theory of lowest weight representations of the basic classical Lie super- 

algebras. To every ER ~ there is associated a lowest weight module (LWM) 

over ~ with lowest weight A = A(X)G (~¢)~ ( ~is the Cartan 

subalgebra of ~¢) and lowest weight vector v : 

hv = ( ~ + ~ ) ( h ) v  , h e ~  ¢ , 2 ~ =  2 ~ 2 ~ , (21a) 
~ ~>O,even ~O,odd 

Xv = 0 , Xe , (21b) 

where ~ is comprised from the negative root spaces (recall the decom- 

position ~ = ~+¢~{~@~). For N=4 ~---~A+~, ~ - weight of the u(1) 

centre of ~ (cf. [2]).Naturally it is enough to require (21b) for X=e_w 

with ~ any simple root, e_~ is the root space vector of -~. The LWM 

is displayed through the standard right action of ~6 on the space ~ 

d (22)  ( ~ ) ( g )  = T ~ ( g  exp(s ,X) ) l s=0  , x £  ~ , s e ~  a , 
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It is easy to see that every element of ~ can play the role of lowest 

weight vector. (In the dual (to the ER ~ ) LWN where ~ acts from 

the left the lowest weight vector is the ~- ruction concentrated at the 

identity of G .) Indeed conditions (21) are an extension to ~ of the 

infinitesimal right action in (20) (see also (15b~. In addition since we 

work with the real form ~ and with finite-dimensional representations 

of NA the functions from ~ satisfy (cf. (15c)) : 
K& 

(~) ~ = 0 , K%=-2(~,~i)/(~;,~;) ~ ~ , (23) 

where ~& are the simple compact (i.e.~l ~ =0) roots. 

3.2. The results of Kac ~] adapted bo our case give that the LWN 

is reducible Only iF at least one of the following 4+4N condititions is 

true : 

2 ( A , ~ )  =-k(~,~) , k ~  , ( 2 ~ )  

w h e r e  a i s  some n o n c o m p a c t  ( i . e .  ~lm ~ 0 )  p o s i t i v e  r o o t .  ( F o r  ~ - 

compact (24) is automatically satisfied for our LWM with k = 2Jl+l, 

2J2÷!,rl+l,...,rN_l+l - cf. (23).) Explicitly the conditions (24) 

corresponding to the 4 even ((~,~)#0) roots are : 

-c ± (l+Jl+J2) ~ ~ , -c ± (jl-J2) ~ ~ , c : d+N-2 , (25 

while those corresponding to the 4N odd ((~,~)=0) roots are : 

d =dlNs - Z~N4, dlNs = 4-2s+2J2+z+2ms-2m/N , s=l,...N , (26.1 

d = d2Ns - Z~N4, d2Ns = 2_2s_2J2÷z+2ms-2m/N , (26.2 

d = d3Ns + Z~N4' d3Ns = 2+2s-2N+2Jl -z-2ms+2m/N , (26.3 

d = d4Ns + Z~N4' d4Ns = 2s_2N_2Jl_Z_2ms+2m/N , (26.4 

where m = ~ m i . (For N=l these conditions were found in [7] .) 

3.3. Whenever (24) is satisfied for some ~ and some k 

an intertwining differential operator (in general nontrivial) 

where is determined for ~ even from 

A I = A- 2(A,~) /(~,~) = ~+ k~ = ~ A, ~ even ~ (27a) 

where w~ is the Weyl reflection of ~ with respect to ~ . For example 

= Jl+k/2,J2+k/2,d+k;Z;rl,...rN - for -k=e+Jl+J2+l • 

For ~ odd ((g,~)=O) ~# is determined from 

A # = A +~ , (A,~) = 0 (27b) 

which may be interpreted as odd Weyl reflections acting in the weight 

system (however one should bear in mind that the root system is not 

invariant under such reflections). Explicitly for the ~N cases in (26) 

there arises 

~--> ~, , 
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~e have (respectively) : 

= l,J2-1/2,d+i/2;z+(N-4)/2N;rl, .... rs_l-l,rs+l,...,rN_ , 

~I = [jl,J2+l/2,d+i/2; as above] , (28) 

= Jl-i/2,J2,d+i/2lz-(N-4)/2N;rl,...,rs_l+l,rs-l,...,rN_ I , 

X'= [Jl+1/2,J2,d+1/2; as above] ; 

where we assume that the Ja and r i entries are nonnegative; if not 

there is no nontrivial operator. 

These maps are not onto for the ER (in general) hence the ER cor- 

responding to the images should be added to the list of reducible ER; 

effectively ~s= ~, where ~ satisfies some of the conditions (24) and 

is obtained from ~ by the changes : jl~J2 , c--->-c (~4-2N-d). 

Every ER for which some condition from (24) holds appears actually 

in a sequence of ER connected by the various intertwining operators. 

This sequence is infinite if ~ is odd since then A+~ satisfies the 

same condition as A (the restrictions for a nontrivial operator should 

be respected of course). Thus each resulting multiplet which groups 

together partially equivalent representations (which are reducible under 

some odd root) unlike the case N=O contains an infinite number of 

members. 
c 

3.4. The explicit construction of the invariant differential ope- 

rators also uses the information from the LWM picture. Whenever the LWM 

A is reducible under the root ~ , i.e. (24) holds for some kE~ then 

the LWM A+k~ can be identified ~ilh s submodule of ~ . Moreover this 

implies the existence in the LWM A of a vector v , called singular 
s 

vector, different from the lo~est weight vector v of ~ and which has 

the characteristics of the lowest weight vector of A+k~ In the Verma 

module realization V~ of the LWM the singular vector can be represented 

by the formula (cf.~8]) : 

v s = P(e~ .... ,e~ )v , (#=rank ~) , (29a) 

where P is a homogeneous polynomial in the root space vectors e~z 

corresponding to the simple roots of degrees 

kkl, .... k~ , ~ = ki~ i , k i = O,1 ; (29b) 

where the decomposition of ~ into simple roots is implemented. 

The next step is to identify the differential operator ~ cor- 

responding to the singular vector by replacing any root vector ~ with 

the corresponding right action of e~ on ~ G ~% 

----> ~ = p(A ' ' ' ' ' 4 ~  ) ~ (30) V S e~ 
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In particular the differential operators corresponding to simple roots 

end to k=l and only these are given exactly by the right infinitesimal 

action of O~ 

3.5. Let us give some examples of operators corresponding to the odd 

roots. The operators corresponding to the two odd (and noncompact) simple 

roots leading to conditions (26.4), s=N, and (26.2), s=l, respectively, 

are: 

= = i~b~ba,k=l,...,N; a,b=l,2; (31a) a N ~DkaZa,  D ka -~; 

= U~DkaE a (31b) 

The operators corresponding to (26.4) for s=l,...,N-i are 

N-s-1 

~' = 7- ~ Cs(r)(~ukDkaZa)Dj2Jl..D. jp (32) 
p=O N-l~Jl>J2...>jp+l=S Jp+l ' 

(Dik is defined in (15b)). The operators corresponding to (26.3) are 

obtained from (32) with the replacement z---~z.£ , E = 

Because of the indexless realization these operators provide a 

compact form of the usual differential relations. Since they act irre- 

ducibly in SL(2,@) - spin and SU(N) - isospin they can be useful also 

in the super-Poincare context where, of course, they are defined without 

the restrictive conditions (26) and correspond to the usual covariant 

derivatives. For instance 

~4f = 0 , if d=z, J2=O=rl=...=rN_l , 

~f = 0 , if d=-z, Jl=O=rl=...=rN_l , 

are recognized Ms the chirality and antichirality conditions on f . 

For semisimple Lie algebras (and groups) all intertwining 

differential operators are exhausted by the compositions of those 

determined by the positive noncompact roots [4J . This is not the case 

here. In particular higher order odd operators corresponding to some 

elements of the positive root lattice arise. Apart from those needed for 

the description of the massless UIR (cf. [2].) we have only partial re- 

sults. These operators are needed also for the more detailed analysis of 

the structure of the representations; in particular one needs them in the 

proof that the conditions of Kac are also sufficient for the reducibility 

of the infinite-dimensional representations as well. 
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ALL POSITIVE ENERGY UNITARY IRREDUCIBLE REPRESENTATIONS 
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72 Blvd. Lenin, 1784 Sofia, Bulgaria 

Introduction. 

In [i] ~e displayed the list of all positive energy unitary irre- 

ducible representations of the conformal superalgebra ~ = su(2,Z/N). 

In the present paper we give the proof of this result. 

The paper is organized as follows. In Section 1 ~e introduce the 

representations of ~ and discuss the superhermitian form used in the 

unitarity construction. In Section 2 we state the main result and in 

Section 3 we give the proof. An Appendix contains the relevant infor- 

mation on ~ , its complexificstion ~ and the roots and weights. 

Essentially the paper is self-contained although we use material from 

the adjacent paper [2] to ~hich ~e refer as I ; also for formulse, 

sections and subsections, e.g., (I.29), 1.3., 1.3.2., respectively. 

i. Representations and forms. 

We consider (as in [1-~ ) representations, called elementary rep- 

resentations (ER), of the conformal superalgebra ~ = su(2,Z/N) char- 

acterized by the signature 

= [jl,j2 ; d ; z ; rl,...,rN_l] , (1) 

where Zjl,2jz ; rl,.°.,rN_ 1 are nonnegative integers indexing the 

inducing representations of sl(2,~) and su(N) ; d 8nd z are 

complex numbers indexing the representations of the dilatation subalgebra 

and of the u(1) centre of the even subalgebra gO of ~ . For N=4 
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this u(1) is a centre of ~ itself and we may consider representations 

of the factoralgebra ~/u(1) ; then z=O . 

Let ~ = ~0 ÷ i~l be a superhermitian form on the Verma module 

V~ = VomV 1 associated (el.I) with the ER % . Superhermitian means that 

~a is a hermitian (possibly degenerate) form on V a ; V 0 and V I are 

orthogonal with respect to ~ : 

: ¢o(xo,x ) + i l(x I x,  ~ a a 

Let X + be the hermitian conjugate of a matrix X~ ~ We specify 

the form ~ by the hermiticity condition 

~ ( ~  x ,y)  = i a ( - 1 ) a d e g x ¢  (x,!~oX~a~o)y) (2a) 

where X a ~ ~ , a=O,l(mod 2) ; ~x denotes the module action of X on 

x ; degx = a for x ~ V a ; ~0 = diag(1,1,-l,-1,1,...,1) ; 

equivalently 

~degy(Xax,Y) = ~degx(X,~oX~a~O y) (2b) 

We recall that the elements of ~ belong rio U(~)v , where U(~) 

is the universal enveloping algebra of ~ comprised from the positive 

root spaces , v is the lowest weight vector of the lowest weight module. 

Normalizing ~(v,v) = ~o(V,V) = 1 and using (2) the norm ~(x,x) of 

any state x e V~ is computed in a standard fashion moving the negative 

root space vectors e.~ = e~ to the right with the help of the com- 

mutation relations (A.1) and the defining properties of the lowest weight 

vector v (1.21). For instance the "l-particle" norms are given by (cf. 

the Appendix): 

a(e~v,e~v) = (-i) a ^ ^ e~v,e~v) = (v, @e e~v) = 

= {-(~+],~) for ~ =~12,~43 ; a = dege~ ; ~ > 0 . (3) 
! 

~+(A+~,~) otherwise 

For ~ > 0 compact these are nonnegative integers (cf. 1.3.2.). (For 

N=4 A-~A+~ in (3), ~ - weight of the u(1) centre of ~ (el. (A.IO) 

and [4~; ~ = 0 for representations of the factoralgebra ~/u(1) .) 

We give one more example which will be used in the unitarity proof below. 

For this we introduce ordering between the odd positive roots as follows. 

We first set that 

~l,4+N > ~I,3+N >''" >~15 >~2,4+N >'''~25 ' (4a) 

~53>~63 ~''" >~4+N,3>~54 > "'" >~4+N,4 (4b) 

I t  follows from (4) that i f  ~-# ~ ~ then ~ - ~ +  i f f  ~>y~ . We 

further choose ~25 >~53 " Now we denote 
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v k = e ~ l . . . e ; k v  ; ~ > O, odd;  ~ l > . . .  > #k ; (5a )  

t hen  we have : 
F k k 

¢;(Vk,V k) = ( - i )  ¢(Vk,V k) = 9 1  ( A + ~ + =  s=l+iE ~s '~ i  ) ' ; = k ( m o d 2 ) = O , 1 ;  (Sb) 

We no te  t h a t  t he  o r d e r i n g  (4 )  i s  e s s e n t i a l  f o r  the  s i m p l i c i t y  o f  (Sb)  

w h i l e  t he  o r d e r i n g  be tween the  two s e t s  i n  (4a)  and (4b )  c o u l d  be chosen 

also as ~4+N,4 >ffl,N+4 

A (nondegenerate) superhermitian form ~ is called positive definite 

if ~0 is positive definite and ~l is either positive or negative 

definite. One can work equivalently with the hermitian forms ~n + ~ or 
U J .  

~0-~i which is the usual convention. respectively, physicists' 

2. Statement of the result. 

Theorem. [1] (i) All unitary irreducible representations of the 

conformal superalgebra su(2,2/N) characterized by the signature 

in (1) are obtained for d and z real and are given in the following 

list: 

(a) d ~- dma x = max(dl,d3) , jl,j 2 ~- 0 ; (6a) 

(b )  d = d4 ~ d l  ' J l  = 0 , J2 b 0 ; (6b)  

0 J2 = 0 ; ( 6c )  ( c )  d = d2 ~ d3 ' J l  - ' 

(d) d = d2 = d4 ' Jl = J2 = 0 

where 

1 2 + + z + 2m -2m/N dl = dNl = 2j2 1 ' 

2 -2j + z + 2m I 2m/N , d2 = dNl = Z 

3 2 + - z + 2m/N , d3 = dNN = 2Jl 

4 -2j - z + 2m/N , d4 = dNN = l 

m I = r I +...+ rN_ 1 , m = r I + 2r 2 +...+ (N-1)rN_ 1 

(The two signs 

; (~d) 

in (6a) (also in (6b),(6c)) are not correlated.) 

(ii) Case (d) d=z=m1=m=O is the trivial one-dimensional repre- 

sentation. In all other cases a UIR is realized as a subrepresentation 

of the corresponding ER. 

a determine some of the conditions Remarks. i. The quantities dNk 

for the reducibility of the ER (cf. [3,~ and (1.26)). Z. In (6d) d=m I , 

z=2m/N-m I and thus case (d) is nontrivial only for N~2 (since for 

N=l mi= m = 0). 3. For N=l statement (i) of the Theorem was announced 
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i n  ref. [5]. 4. Excluding the one-,dimensional case from conditions (6) 

follows : 

d ~ d M ~{2 + Jl + J2 ' jlJ2 ~ 0 , (7) 

+ Jl + J2 ' JlJ2 = 0 , 

which are the conditions for the positive energy UIR's of the conformal 

group SU(2,2) [6]. The equality in (7) is achieved for jlj2#O from 

(6a) when d=dmax=dl:d3 and ml=O and for jlj2=O from (6b) (respec- 

tively (6c)) when d4=dl (respectively d2=d3) and ml=O and from (6d) 

when m!=l (l~m~N-1). The latter (jlJ2=O) cases comprise the messiess 

UiR 's  discussed in if]. 

3. Proof of the Theorem. 

The proof proceeds in two main steps. First we shall show that when- 

ever conditions (6) are fulfilled the superhermitian form ~ defined 

above gives rise to a positive definite form on (a quotient of) V~ with 

both and ~i positive definite. 

We recall that the Verma module V~ can be reducible and the 

reducibility conditions were spelled out in ~,~ and (1.25,26). A 

reducible Verma module contains a submodule 

I% : u ' (  )v , u' =L ]  u( (8)  
i 

where the un ion  i s  ever  the p o s i t i v e  noncompact r oo t s  under wh ich 

i s  r e d u c i b l e ,  P. i s  the homogeneous p o l y n o m i a l  i n  the s imp le  r oo t  space 
i 

vectors e~ such that ~(e~)v is the corresponding singular vector 

(el. ~] and (I.29))). Finally the irreducible Verma module will be 

The module V~ inherits from V% the form ~ The requirement of 

positive norm gives the unitarity conditions (6) as follows. 

V~ can be decomposed in ~¢tm~ - finite-dimensional irreducible 

representations. Here ~ is the l-dimensional dilatation subalgebra and 

~I~= sl(2,~)mu(1)msu(N) , (cf I). The corresponding representation 

provide an orthogonal basis in V% . The U(~) 0 - generated vectors 

4~tm& states of the even part of V~ reproduce conditions (7) which 

were seen to be implied by (6). To obtain (6) it is enough to look at 

the ~tm~ - content generated by the action of the finite-dimensional 

( ~ U  Grassmann algebra A = U ~ + ) /  (~+)0 on v ~ , 7 ] .  As usually it is 

sufficient to check the norms of the "vacuum" vectors v' of the z~Im~ - 

representions. These states are subject to the constraints (cf. Appendix 

for notation): 

hv '  = (A~)(h)v', h ~ {  ~ , A' = ~ ( ~ ) E ( { ~ )  * , ( l e a )  
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e ~ v '  = 0 = ( e ~ ) n ~ v  ' , n~ = - 2 ( A ' , ~ ) / ( ~ , g ) e  ~ , ( l O b )  

where  ~ i s  any s i m p l e  c o m p a c t  r o o t .  I t  f o l l o w s  f rom t h e  r e s u l t s  o f  

[4 ]  t h a t  t h e s e  s t a t e s  a re  g i v e n  by P . . . .  P. v , where  P. a r e  t h e  
i I 1 k l j  

p o l y n o m i a l s  p r o d u c i n g  t h e  s i n g u l a r  v e c t o r s  ( c f . ( 8 ) ) .  Ho#ever  such a 

s t a t e ,  w h i c h  we c a l l  q u a s i - s i n g u l a r ,  i s  n o t  n e c e s s a r i l y  a c c o m p a n i e d  by 

some r e d u c i b i l i t y  c o n d i t i o n ( s )  f r om ( I . 2 6 )  on t h e  s i g n a t u r e  X '  w h i c h  

c o n d i t i o n ( s )  w o u l d  a r i s e  i f  { 1 0 )  i s  c o m p l e t e d  t o  ( I . 2 1 , 2 3 )  ( w i t h  A ,v--> 

A ' , v ' ) .  We r e e a l l  t h a t  ( I . 2 1 )  means t h a t  v '  i s  t h e  l o w e s t  w e i g h t  v e c t o r  

o f  V%~ and a r e d u c i b i l i t y  c o n d i t i o n  means t h a t  v '  i s  a s i n g u l a r  v e c t o r  

o f  a r e d u c i b l e  V~ i n  w h i c h  V~ i s  embedded ( v i a  v ' ) .  The s i n g u l a r  

v e c t o r s  were  e o n s t r u c t e d  i n  [ 4 ]  and t h e  c o m p u t a t i o n  o f  t h e  norms o f  t h e i r  

q u a s i s i n g u l a r  c o u n t e r p a r t s  i s  s t r a i g h t f o r w a r d  ( t h e  t r u e  s i n g u l a r  v e c t o r s  

h a v i n g  z e r o  norms o f  c o u r s e ) .  The d i r e c t  check  shows t h a t  f o r  d ) d  
m a x  

a l l  s t a t e s  have p o s i t i v e  no rm.  For  d = dma x t h e  s t a t e s  w i t h  z e r o  norm 

( t h e  w o u l d - b e  g h o s t s )  a r e  n o t  c o n t a i n e d  i n  V~ ( b e i n g  c o n t a i n e d  i n  I ~ ) .  

Thus we o b t a i n  case ( a ) .  

For d <d there are many states with negative norm. First we note 
max 

that there is no positivity for d (d' = max(d2,d4) because (d-d4)/2, 
max 

(d-d2)/2 are the norms of the "l-particle" states e~v for ~ = ~25 ' 

~N+4,4 ' (i.e. the two odd simple roots),resp., ~hich are absent from V~ 

only for d:d4, d=d2, resp. Further there are states with norm 

proportional (with positive coefficient) to (d-d3)(d-d4) , resp. to 

(d-dl)(d-d2), (For example e~15e~25v, resp. e N+4,3e~N+4,4v .) Because 

! 
of this there can be no positivity in the open interval (dmax,dmax). 

Thus we should try d = d' . However there are states with norm 
max 

positively proportional to d-d3+2 = d-d4-4Jl (e.g. e~l 5v), resp. to 

d-dl+2 = d-d2-4J2 (e.g. e~ v),at least one of which would be negative 
N+4,3 

for d=d~a x if jlJ2 ~ 0 . Obviously all of the above mentioned norms 

would be nonnegative either if Jl = 0 and d = d4 ~ dl , o__rr if J2 = O, 

and d = d2 ) d3 , o_z_r if Jl = J2 = 0 and d = d2 = d4 . There are no 

more negative norm states under these conditions and again the zero norm 

states belong to I% and are factored out. Thus we obtain cases (b),(e) 

and (d). 

The second step will be to relate the form ~ on V~ to a ~ - 

invariant form F on a subspace C~ of the ER space C% A 

invariant superhermitian form on a ~ representation space C~ is 

defined by the relation 

, , ' ' (ll F(T(Xa)U'U ) = -(-l)adegUF(u'T(Xa )u') Xa ~ @a ' u,u E C~ . 

When extended to X 6 ~C the relation (ll) transforms into a definition 
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of the hermitian conjugation of T.(X) analogous to (2) but with /0 

replaced by ~ . 

If F is positive definite with F 1 positive (resp. negative) 

definite a straightforward calculation shows that the superconformal 

Hamiltonian ~= (pO+KO)/z = (e14+e23+e31+e42)/2 is represented by a 

positive (resp. negative) operator on V~ (The metric (-,+,+,+) in 

Minkowski space-time is assumed.) The same result applies to the energy 

operator pO itself. 

The module V~ was built by the right action of U(~) on the 

elements of the ER. One can define a lowest weight module of ~ adapting 

the same abstract definition (I.21) but now identifying X with the 

left action T(~-lx~) of ~ i e. with the ER itself. Here 

1/~I-~ ~ ~ ~I is the real orthogonal matrix relating the two realiza- 

=~ ~ ~Z tions of su(Z,2/N) , i.e. the matrices /0 and ~ . 

0 ~N 
In particular the ne~ lowest weight ~ satisfies 

T(~)~= (A+~)(ho)~= d.~ , ~ =~JL-lho ~ , h 0 in (A.8) , (12a) 

T(u-lh~I#~)~:-2Ji~'2, T(~-lh~43~)~'2 =-2J2~ 
These three generators belong to the maximal compact subalgebra I C ~ ; 

they are diagonal in the standard realization of su(2,Z/N) using /0 

(Note that the identifieatio~ above does not mean that ~e change our 

realization (1.2) of ~ .) Similarly 

T O Z - Z ~ ) ~  = 0 f o r  K~O . ( 1 2 b )  

The f o rms  F and ~ a r e  r e l a t e d  a c c o r d i n g  t o  

F ( Q , # )  : : 1 , 
(z2c) 

F(T(~-lx~)~2, T (~ - l x ' 3z  )~) = $ (~v ,~ ' v )  , X,X' e U(~t) 

One e a s i l y  checks  t h a t  i n  t h i s  way (2 )  goes o v e r  t o  

F ( T ( X a ) U , U ' )  - i a ( - 1 ) a d e g U F ( u , T ( ~ X ~ ) u  ' )  = 0 , X a E ~ ( 1 3 )  

and t h u s  t h e  ~ - i n v a r i a n c e  ( 1 1 )  o f  F i s  r e c o v e r e d .  Us ing  t h e  

F u n c t i o n a l  r e a l i z a t i o n  o f  t h e  ER [ 4 ]  one can' e a s i l y  f i n d  an e x p l i c i t .  

e x p r e s s i o n  f o r  ~ The l e f t - a c t i o n  l o w e s t  w e i g h t  modu le  r e a l i z e d  i n  t h i s  

way i s  n o t h i n g  e l s e  b u t  t h e  -~ - i n d u c e d  s u b r e p r e s e n t a t i o n  i n  C% w i t h  

T( ~ ) bounded  From b e l o w .  For  t h e  u n i t a r y  w e i g h t s  l i s t e d  above  t h i s  i s  

hence a p o s i t i v e  e n e r g y  ( " h o l o m o r p h i c " )  s u b r e p r e s e n t a t i o n  o f  t h e  ER. 

I t  s h o u l d  be c l e a r  t h a t  a l l  c o n s i d e r a t i o n s  above c o u l d  be made d i -  

r e c t l y  i n  t e r m s  o f  F and t h e  r e l e v a n t  s u b r e p r e s e n t a t i o n s .  In  p a r t i c u l a r  

t h e  a n a l y s i s  o f  t h e  ~ e ~  - c o n t e n t  goes o v e r  t o  t h e  4 0 - c o n t e n t  o f  

t h e  s u b r e p r e s e n t a t i o n .  
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Finally we recall that *henever some reducibility condition from 

(I.25,26) is satisfied there arises an invariant differential operator 

in the ER space. To the factormodule V~/I~ there corresponds a sub- 

representation space of C~ comprised from solutions of the resulting 

differential equation. This concludes the proof of the Theorem. 

We should mention also that a negative energy ("antiholomorphic") 

subrepresentation of ER can be built starting from a highest *eight 

vector ~- satisfying instead of (12) 

T ( ~ - l h ~ ) ~  - = - ( A + ~ ) ( h ) ~ -  , (14a) 

T ( % - l ~ z ) ~  - : 0 f o r  ~>0 . (14b) 

A positive definite ~- invariant form F- *ith a negative definite 

odd part F~ can be defined for the same values of ~ described in the 

Theorem. 

Appendix. 

We shall exploit a Cartan-Weyl basis in ~ = sl(4/N;~) (cf. (I.l)) 

[h, e~] = ~(h)e~ , [e~, e_~] = (e~,e~)h~ , 
( A . l a )  " 

[e~,  e~] : N~ e~+} , N~}~ : 0 i f  ~+j: ~ ~ , 

, he re  [ ,  ] i s  the s u p e r - L i e  b racke t  ( o f .  I ) ,  h @ ~  (= the Cartan 

suba lgebra  of  ~ ) ,  ~ ,~  cA(= the roo t  system of  ( ~ C , ~ ) ) ,  e~ i s  the 

roo t  space v e c t o r  co r respond ing  to the roo t  ~ , ( , ) i s  the K i l l i n g  

form on ~ 6 .  R e l a t i o n s  ( A . l a )  imp ly  

(~,~) --~(h~) _~(h~) = (h~,h~) - sir h~hp (A.ib) 

A standard choice satisfying (A.1) is provided by 

j-i 
~ij = ~  ~s > 0 for i~ j ; ds ' s=l,2,...,3+N, simple roots ; 

S:l 

e~ = e i k  ; ( e i k ) s  t = &is&k t ; (A .2)  
ik ~:i xz>O 

h~ = ~(4-i)(eii-ei+l,i+l) + ~(e##+e~.ff ) ; ~(x) = x:O ; 
1 

aij = (~i,~j) = (2~ij-~i,j_l-~i,j+l)([(4-J)+~j4) 2[ij~j4 , 

1 2 3 4 5 3+N 
which choice is described by the Dynkin diagram o--o--o--s--o-...-o 

where the white nodes o depict the even simple roots ,ith I(o(,~)l=2 

and the black node ~ depicts the odd simple root *ith (@,@)=0 ; in 

addition for N=4 *e have the relations 

3 3 

s=lT- s(h~s + h~8_s) + 4h~4 = 18 ~ s=lY-- S(~s + °(8-a) + 4~ = 0 

Our choice of a system of positive roots ~ill differ from (A.2) (cf. 

I). Namely we define 
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= i j  = ~ s '  i < j  
= 

where the  se t  o f  s i m p l e  r o o t s  i s  p r o v i d e d  by 

# 1  = ~l  ~ / 2  = ~25 ~ / 2 + s  = ~4+e ' s=l . . . . .  N - l ,  

~2+N = -~4,N+4 = ~N+4 ,4  ; ~ 3 + N  = -d3 = ~(43 

(A .3a  

(A.3b) 

This implies a Dynkin diagram o--~--o-...-o--~--o and 

~13 = #l,N+4 ' ~14 = #l,N+3 ' ~24 = 22,N+3 ' ~2 = ~2,N+4 ' 

~a,k+4 =~a,k+2 ' -~2+a,k+4 =~k+2,N+2+a ' a=l,2, k=l,...,N 

~4+k,4+s =~2+k,2+s ' k,s = I,...,N 

(A.3e 

We write down some useful formulae: 

(~a,4+s '~4+p,2+b ) = ~sp ; a,b=l,2; s,p=l,...,N; (A.4) 

(~a,4+s ,C~b,4+p) = Sab - ~sp ; (~4+s,2+a '~4+p,2+b ) = ~ab - ~sp 

Let 2~ = ~ ~ - > 2 ~ ~ ({~)*. Then we have 
~O,even ~)O,odd 

N+2 
2~ = (3-N)(~l+~3+N) + k=~2#k(N_k)(k_4)= = 

N-1 
= ( 3 - N ) ~ l  + 2 (2 -N )42  + (1 -N )~  3 + ~ s ( N - s ) o ( 4 +  s ; (A .5 )  

s = l  

( ~ ' ~ a , 5 + N - t )  = ~ a l  + t - N ; ( j~ ,c~5+N_t ,2+a)  = ~a l  + 1 - t .  ( A . 6 )  

The values of the weight ~ E ({~)* on the elements of the Cartan 
subalgebra in (A.2) are given by : 

(A+~) (ho; ;h '  , .  ) = h~12'h~43 ; h~,3+ N "''h~ 5 

= ( d ; - l J l ' - l J l ; Z ( 1 - ~ N 4 ) ; r l  . . . .  , rN_ 1) ; ( A . 7 )  

where h 0 is the dilatation generator 

I 0 il 
2h 0 = h~l+lh~2+h ~ = {0 -12 

3 k0 0 
(A.8) 

N1 1l:4 o 1 h'  = ( s / 2 ) h ~  + 2 ~ ( 1 - s / N ) h ~  : 2 4 ( A . 9 )  
s= l  s s=O 4+s ~1 N 

~er N=4 the weight ~ mentioned after (3) takes the following values 
over the same elements of {6 (h' = (2/2)18) : 
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( . . . )  = ( o ; o , o ; z ~ O  . . . . .  o) ( A . I O )  
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i .  Conformal Groups and the V i r a s o r o  Algebra 

This  conference cen te rs  on the Conformal Groups. Over any but  2- 

d i lmensional  pseudo-Euc l idean spaces, there  are f i n i t e - d i m e n s i o n a l  

pseudo-or thogona l  L ie groups S O ( s + l , t + l ) ,  f o r  m e t r i c s  w i t h  s space- 

l i l ke  and t t i m e l i k e  d imens ions .  In 2 -d imens ions  ( x , y ) ,  d e f i n i n g  a 

conformal  t r a n s f o r m a t i o n  as an i sogona l  mapping which conserves the 

sense o f  an angle as we l l  as i t s  magn i tude,  i t  can be shown t h a t  i t  i s  

e q u i v a l e n t  to an a n a l y t i c a l  d i f f eomorph i sm w = f ( z ) ,  f o r  z = x + i y .  

Th is  is  because the c o n d i t i o n s  f o r i s o g o n a l i t y  tu rn  out  to be j u s t  the 

Cauchy-Riemann d i f f e r e n t i a l  equa t ions  1 ) .  

The 2 -d imens iona l  conformal  group p l a ~  an i m p o r t a n t  r o l e  in 2- 

d imens iona l  quantum f i e l d  t heo ry  2 ) .  Because o f  the above cor respon-  

dence between conformal  and d i f f eomorph i sm  groups,  one may in f a c t  

de f i ne  two a n a l y t i c a l  d i f f eomorph i sm  groups A 2 and A~ co r respond ing  

to the v a r i a b l e s  z and ~ in  the above n o t a t i o n .  These groups can 

be desc r i bed  a l g e b r a i c a l l y ,  us ing a method due to Og ieve tsky  3) One 

expands the i n f i n i t e s i m a l  v a r i a t i o n  6z (z )  

z'  = f ( z )  = z + 6z (1 .1 )  

in powers of  z, so t h a t  d e f i n i n g  (m ~ I )  

L m - i  z m+l ~ = ~ (1 .2 )  

we have 

az = (~ C m zm)z = i ~ C m (LmZ) 
m 

and the L m form the c l a s s i c a l  i n f i n i t e  Og ieve tsky  a lgebra  

[Lm,Lm] = (m-n) Lm+ n , m,n ~ 2 (1 .3 )  

an a lgebra  p l a y i n g  an i m p o r t a n t  r o l e  in c l a s s i c a l  p h y s i c s ,  ( e .g .  the 

A n a l y t i c a l  E i n s t e i n  Covar iance group and i t s  d o u b l e - c o v e r i n g 4 ) ) .  

In Quantum Mechanics,  the commutat ion r e l a t i o n s  (1 .3 )  undergo a 

de fo rma t ion  through the i n s e r t i o n  of  a c e n t r a l  e lement  in the a lgeb ra .  

The grad ing  L o, a sca le  o p e r a t o r ,  i s  e s s e n t i a l .  The r e s u l t  i s  the 

V i r a s o r o  a lgebra  5 ) ,  d e r i v i n g  from both the equa t ions  of  mot ion and the 

boundary c o n d i t i o n s  and r e p r e s e n t i n g  the a l g e b r a i c  system of  con- 

s t r a i n t s  f o r  the Veneziano s t r i n g .  The spectrum is  g iven  by p u t t i n g  

the vacuum as the h i g h e s t  we igh t  

Ln I o >= o , n ~7 , n >o.  
( 1 .4 )  

Lo lo>= u]o> 

and using the l o w e r i n g  L_n to c o n s t r u c t  the e n t i r e  se t  o f  s t a t e s .  The 
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V i r aso ro  a lgebra  commutation r e l a t i o n s  are (d is  a rea l  number . d_> 1) 

[Lm,Ln] = (m-n) Lm+ n + d{ 1 (m3-m)~m,_n } 
(1 .5 )  

[Lm,d] = o 

and h e r m i t i c i t y  determines t h a t  
+ 

L n = L_n (1 .6 )  

The r e p r e s e n t a t i o n s  are then c h a r a c t e r i z e d  by ( d , v ) .  In the Veneziano 

dual mode l6 '7 )v  was the Regge i n t e r c e p t  and d the d i m e n s i o n a l i t y  of  

the space. For the r e p r e s e n t a t i o n  to be u n i t a r y ,  d=26 f o r  a Mink- 

o w s k i - l i k e  me t r i c  (o r  24 t r a n s v e r s e  d imens ions ) .  In the s u p e r s t r i n a  

o f  Ramond and Neveu-Schwarz and in the more r e s t r i c t i v e  ve rs i on  o f  

Green-Schwarz 8 ) ,  d=lO. The correspondence between 2 -d imens iona l  

Conformal symmetry and the A n a l y t i c a l  D i f feomorph isms was e x p l o i t e d  

by B e l a v i n  e t  al 2) f o r  the study o f  2 -d imens iona l  systems in S t a t i s -  

t i c a l  Mechanics and has produced a u n i f y i n g  a l g e b r a i c  t r ea tmen t  f o r  a 

v a r i e t y  of  problems in the Physics of  Condensed Ma t t e r .  The work was 

f u r t h e r  developed by Fr iedan et  al 9) and Goddard e t  al I0)  With d 

in (1 ,5 )  t ak i ng  up a se t  of  va lues w i t h i n  another  a l lowed range,  

o_<d < I  (see e .g .  ( 1 . 7 ) ) ,  one reproduces the c r i t i c a l  behav iou r  para-  

meters f o r  the f o l l o w i n g  problems,  

d model 

1/2 I s i n g  

7/10 t r i c r i t i c a l  I s i n g  

4/5 t h r e e - s t a t e  Pot ts  

6/~ t r i - c r i t i c a l  t h r e e - s t a t e  Pot ts  

In these problems,  the two a lgebras  (. for z and 3) are used, w i th  common 

d. The va lues  o f  u(z)  + u(z-) = v (+) g ives  the " s c a l i n g "  d imension o f  

the f i e l d  and u ( ' )  = u(z)  u(7) g ives i t s  sp in .  C r i t i c a l  exponents 

are s imp le  l i n e a r  combinat ions  o f  u (+) and u ( - )  The value o f  d is  

r e l a t e d  to the conformal  anomal ies 11). FQS 9) showed t h a t  u n i t a r i t y  

(and a p o s i t i v e - d e f i n i t e  H i l b e r t  space s c a l a r  p roduc t )  r e q u i r e s  e i t h e r  

d->1 (a cont inuum) and u_>o or d i s c r e t e  va lues l i k e  theabove,  g iven by 

d = 1 - 6/(m+1)(m+2) (m_>l,  m ~ I )  

v = { [ (m+2)p - (m+ l )q ]  2 - 1} /4(m+Z)(m+2) (1 .7 )  

(l_<p_<m , l < q  _<p , p,q ~ I )  

Goddard 12) has emphasized the n a t u r e o f  the "group m u l t i p l i c a t i o n "  f o r  

, due to tke group ac t i on  (1 .1 )  

z" @ z 'Cz)  : z " ( z ' ( z ) )  (1 .8 )  
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Th is  i s  thus c o m p o s i t i o n ,  and A is  n o n - a b e l i a n .  The suba lgeb ra  w i t h  

m=±l ,o  i s  an s u ( 1 , 1 )  c o r r e s p o n d i n g  to the p r o j e c t i v e  t r a n s f o r m a t i o n s  

z'  - az~b , lal  2 Ibl 2 : I ( 1 . 9 )  
b *z+a*  

S i m i l a r l y ,  t he re  i s  an i n f i n i t e  sequence o f  s u ( l . 1 )  a lgeb ras  

i 1 1 
{~  L_n , ~ L o , ~ L n} , w i t h  

z'  = ( azn+b ,11n 
b*zn+a *) 

(1 .10 )  
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2. Local Currents and A f f i n e  Kac-Moody Algebras 

Current  a lgebras 13) cons is ted  in a system of dynamical v a r i a b l e s ,  

the loca l  c h a r g e - c u r r e n t  d e n s i t i e s  o f the  SU(3) genera to rs ,  or of t h e i r  
c h i r a l  14) SU(3) x SU(3) ex tens i on ,  cons t ra ined  by an angu lar  c o n d i t i o n  
15,16) due to L o r e n t z - i n v a r i a n c e .  The loca l  c u r r e n t s  obeyed equal -  

t ime commutation r e l a t i o n s ,  
c 

[Ja'°(~'t) , Jb ' ° (~ ' ' t ) ]  = i fab (2 .1)  

[J° (~ ' t )a  ' jb'i(~ , t ) ]  = i fabC 

63(~-~ ')  j ° ( ~ , t )  

~3(~_~) j i ( ~ , t  ) 

+ i C a i { ~ 3 ( ~ - ~ ' ) }  e tc .  
(2 .2)  

The C "Schwinger"  term in (2.2)  is  of  t ~  same nature as the cen t ra l  
term in (11.5). The rep resen ta t i ons  were c l a s s i f i e d  17) H. Suaawara 
and C. M. Sommerfield cons t ruc ted  a candidate dynamical theory ~8), 

i n c l u d i n g  the commutation r e l a t i o n s  between the components of the 

loca l  cu r ren t  d e n s i t i e s  and the components of the 0 ~ energy-momentum 

tensor .  They cons t ruc ted  the Hami l ton ian  dens i t y  as a b i l i n e a r  in 
the cu r ren ts  

a(x.) "a(x) + "a(x) ' a ( x ) }  e ( x )  = A{ j~ j~ 3v 3~ 
(2 .3)  

a(x) j~(x)~ + . . .  + B g~v { jp  

wi th 

[J°(~, t )a , j ~ ( ~ , , t ) ]  = i fab c 

j ~ ( ~ , t )  I d3x e l ~  ° ( ~ ,  t )  
= Ja 

j ~ ( ~ + ~ ' , t )  (2 .4)  

(2 .5 )  

and a s imple r e p r e s e n t a t i o n  is given by 

j ~ ( ~ , t )  ~ Xa( t )e  i~  (2 .6)  

(h a an su(3)  m a t r i x ) ,  
The mathematical  s t r u c t u r e  of these a lgebras was descr ibed in  

Ref.19. C l e a r l y ,  t h i s  was an i n f i n i t e  Lie a lgebra 20) w i th  a c lose 

resemblence to f i n i t e  Lie a lgebras .  The mathemat ic ians V. G. Kac and 
R. Moody 21) i ndependen t l y  took up the s imp les t  c lass of  i n f i n i t e  Lie 

a lgebras ,  t ha t  of  A f f i n e  i n f i n i t e - d i m e n s i o n a l  a lgebras ,  a d m i t t i n g  a 7 

g rad ing ,  such as the one prov ided by " -Lo"  in (1.5)  

[ -Lo ,L  m] = m L m , m ~ 7 (2 .7)  

i . e .  through a s c a l e - o p e r a t o r  (from (1 .2 ) )  

D = - L  = i z  - -  o ~z (2 .8 )  
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and w i t h  "manageable"  growth i n  the d i m e n s i o n a l i t y  o f  the graded sub- 

spaces 

d im {Vm+ l } / d im {V  m} ~ m g ' l  , a__<2 (2 .9 )  

These are the A f f i n e  Kac-Moody a l g e b r a s ,  and they  resemble ( 2 . 4 )  

very  much The Kac-Moody group K i s  genera ted  by t a k i n g  smooth maps 

from the c i r c l e  S i n t o  a s imp le  f i n i t e  L ie  group G: 

K : S' ÷G (2 .10 )  

Th is  i s  p r e c i s e l y  ( 2 . 6 ) ,  as 

S' : z ~ ~ , z l =  1 

i . e .  z = e i *  , o<~<2~_ _ 

( 2 .11 )  

z ÷ g (z )  ~ G (2 .12 )  

the m u l t i p l i c a t i o n  r u l e  here is  p o i n t w i s e  m u l t i p l i c a t i o n ,  

g l  ~ g2 (z)  = g l  ( z )  g2 (z )  2 .13)  

K i s  a l so  known as the " l oop  group"  o f  G. 

g = e x p { - i  oa (z )  T a} 

c 
[Ta,T b] = i lab Tc 

w r i t e  

g = 1 - i  ea(iz) T a 

= 1 - i ~ o a )  n z "n T a n e I 
n 

Given the a l g e b r a  o f  G, 

2 .14)  

2 .15)  

2 .16)  

: i - i~ ( iea)  n T 
a , - n  n 

T a T b~ i fab c o [ m' n J = Tm+n 

and f o r  h e r m i t i a n  T a we f i n d  the u n i t a r i t y  c o n d i t i o n  

T a+ = T a n -n 

{2 .17 )  

( 2 .18 )  

Q u a n t i z i n g  from Poisson to L ie  b racke t s  

[Tam' Tb"n j = i ( ~ )  fabc  TC + 0(~2)  

T a T b~ i fab T c + k m 6 ab 
[ m' n j = c m+n a m , - n  

The Sugawara model 18) y i e l d s  12) 

[Lm,T~]= -n T a M:n 

22) Ramond and Schwarz 

( 2 . 1 9 )  

(2 .20)  

had t r i e d  to c l a s s i f y  a l l  p o s s i b l e  dual model 
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gauge a lgebras.  Thei r  c l a s s i f i c a t i o n  assigned the odd ( i . e .  fe rm i -  

onic)  generators to n o n - t r i v i a l  rep resen ta t ions  of  G. This al lowed 

only U(1) and SU(2), but f o r  d e f i n i t e l y  unphysical  values of  d. How- 

ever ,  once the odd generators were assumed ~behave t r i v i a l l y  under G, 

as was done in the new supe rs t r i ng  of  Green and Schwarz, i t  seemed 

poss ib le  to take an a r b i t r a r y  group G. S t i l l ,  the ex is tence of  

anomalies i n t e r f e r e s  wi th r e n o r m a l i z a b i l i t y  both in the (Yang-Mi l l s  

generated) currents  of (2 .4)  type,  and in the energy-momentum 

"cu r ren t s "  ( 2 . 3 ) .  There are c h i r a l ,  conformal and mixed anomalies. 

However, i t  was r ecen t l y  not iced by Green and Schwarz 23) tha t  a l l  

anomalies cancel fo r  G = S0(32)/~(2~.  J. Th ie r ry -M ieg  24) " showed tha t  

t h i s  is a lso t rue f o r  G : E 8 x E 8. The c a n c e l l a t i o n s  also occur in 

the " low-energy"  f i e l d  theory approx imat ion.  We sha l l  see tha t  the 

Cartan subalgebra of  the above two candidate 'G make up the only two 

even unimodular l a t t i c e s  in 16 (Eucl idean)  dimensions (or  18 Mink- 

owskian).  Green and Schwarz f u r t h e r  showed 25) tha t  fo r  these G, the 

p e r t u r b a t i o n  expansion of  the r e l evan t  supe rs t r i ng  ( " t ype  I " )  is 

f i n i t e .  The o r i g i n a l  method of  i n t roduc ing  the group G in a s t r i n g  

theory was based on a t tach ing  the i n t e r n a l  quantum numbers to the ex- 

t r e m i t i e s  of  "open" s t r i n g s ,  Considerat ions at the l eve l  of  " t r ee "  

diagrams 26'27) cons t ra in  G to the sets o f  SO(n,~),  USp(2n) and U(n). 

The l a t t e r  are,  however, unsu i tab le  due to the appearance of anomalies 

in loop c a l c u l a t i o n s .  This c l a s s i f i c a t i o n  thus does not a l low the 

except ional  a lgebras ,  i nc l ud ing  E 8. 
I t  was only through the development by Frenkel and Kac 28) of  a 

cons t ruc t ion  fo r  the u n i t a r y  i n f i n i t e  rep resen ta t ions  of  the K of  

( 2 . 9 ) ,  using s t r i n g  operator  techniques 5 ' 6 ' 2 9 ) ,  tha t  i t  became 

poss ib le  to use the even-orthogonal  Lie algebras D r (genera t ing  

SO(2r ,~) ,  the t race less  A r (genera t ing  the SU(r+I) e t c . )  and the ex- 

cep t iona ls  of  the E r f am i l y  ( r=6 ,7 ,8 )  fo r  G. A ra the r  promising 
phys ica l  model has now been developed 30'31) , using e i t h e r  S0(32) /~(2)  

or E 8 x E 8. The l a t t e r  group has great  advantages in i t s  f i t  w i th  the 

phenomenology and has the re fo re  a t t r a c t e d  g rea te r  a t t e n t i o n  32) 

Several tex ts  on Kac-Moody algebras have appeared in recent  
years33,34)  
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3. I n t e g r a l  L a t t i c e s  ' 

In the above c o n s t r u c t i o n ,  the theory of In teg ra l  La t t i ces  plays 

an e s s e n t i a l  r o l e .  

A l a t t i c e  is a p e r i o d i c  ar ray spanning the e n t i r e  d-d imensional  

space. "Cubic"  l a t t i c e s ,  in any number of  dimensions d, a ~ l i k e  

abe l ian  Lie groups in Lie group theory .  La t t i ces  can be decomposed 

and the cubic  ar rays can be segregated.  They are denoted ~d. 

The s imp les t  n o n - t r i v i a l  i n t e g r a l  l a t t i c e  is t ~  l a t t i c e  of  roots 

of the a lgebra A 2 (gene ra t i ng  SU(3), SL(3 ,R) ,  SL (3 ,~ ) ,  e t c . )  The con- 

ven t ion  is t ha t  the length  of  the root  vectors  ( s i x  in t h i s  example) 

is normal ized to (p i )2=2 .  We give an enumeration of root  l eng ths :  

Uo=l ( t h i s  is the root  at the o r i g i n ;  as a l a t t i c e ,  we count the 

o r i g i n  only once, not as we do in count ing  the a l g e b r a i c  r o o t s ) ,  

Ul=O (no odd- leng th  vec to rs )  u2=6. For the A n in genera l ,  

u2= i ,  u2=n(n+ l ) .  
The Dynkin diagram fo r  the A n is a s t r a i g h t  l i n e  segment con- 

nec t ing  n dots.  Each dot represents  one fundamental r oo t ,  spanning 

the d i m e n s i o n a l i t y  of the Cartan subalgebra.  In A 2, the fundamental 

roots are the I - s p i n  r a i s i n g  and U-spin r a i s i n g  ope ra to rs ,  w i th  an 

angle of 2~/3 between them. In the Dynkin diagram, the n dots of A n 

are a l l  marked "p2=2" ,  i . e .  they a l l  rep resen t  vectors  w i th  equal 

norms. The l a t t i c e  has a de te rm inan t ,  t ha t  o f the  Cartan mat r i x  of  

sca la r  products  between fundamental roo ts .  For A 2 as 

cos 2~/3 = sin ~/6,  the mat r i x  has "2" in the diagonal  and " -1 "  f o r  

the o f f , d i a g o n a l  element.  Thus the determinant  w i l l  be equal to 3. 

For the A n in gene ra l ,  a l l  the angles between consecut ive  fundamental 

vec tors  are again 2~/3. This is coded i n to  the Dynkin diagram by the 

use o f  a s ing le  l i n e  to connect the dots. In o the r  a lgebras ,  w i th  o the r  

angles,  one has double l i n e s  fo r  3~/4 in the Bn, C n and F4, or a t r i p l e  

l i n e  f o r  5~/6 in G 2. Between fundamental root  vectors  cor responding 

to unconnected dots ,  the angle is ~/2 and the mat r i x  gets no con- 

t r i b u t i o n ,  

I n t e g r a l  l a t t i c e s  A use only " s i n g l e - l a c e d "  Dynkin diagrams, i . e .  

angles of  2~/3, Thus only the An, D n and E 6, E 7, E 8 c o n t r i b u t e  and 

rep resen t  the set  o f  "component l a t t i c e s "  u n t i l  we reach 24 dimensions. 

FQr the D n [generat i lng SO[2,n) ,  e t c , )  det Dn=4, f o r  a l l  n. For E 6, 

E7, E 8 the determinants  are r e s p e c t i v e l y  3 ,2 ,1 ,  We thus learn tha t  E 8 

is  a unimodular l a t t i c e .  The de te rminan t ,  i n c i d e n t a l l y ,  gives the 

dens i t y  o f  l a t t i c e  po in t s  per u n i t  volume. The A n , D n and E6,7, 8 are 
the only component l a t t i l c e s  ( in  any number of  dimensions) generated 

by vec to rs  of norm 2. 
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A l a t t i c e ' s  dual A* is  another  l a t t i c e ,  generated by a l l  vec to rs  

whose s c a l a r  products  w i th  the component l a t t i c e s '  roo t  vec to rs  have 

an abso lu te  va lue o f  one or z e r o .  For A 2, t h i s  means a d j o i n i n g  the 

vec to rs  f o r  quarks and a n t i q u a r k s .  The new l a t t i c e  A 2 is  in  f a c t  the 

l a t t i c e  of  a l l  r e p r e s e n t a t i o n s o f  A 2, i . e .  a l l  s t a t e s  in  a l l  r ep res -  

e n t a t i o n s  l i e  on A 2 The same w i l l  be t r ~ o f  a l l  A* D* and E* 
• n '  n n '  

except  t h a t  we know from Lie a lgebra  theory  t h a t  a l l  r e p r e s e n t a t i o n s  

o f  E 8 are generated by the a d j o i n t ,  so t h a t  E 8 i s  s e l f - d u a l .  One is  

i n t e r e s t e d  35) in un imodu lar  l a t t i c e s ,  and in p a r t i c u l a r i n  even ones 

( i . e .  such t h a t  have U2r+l=O, r = o , l  . . . .  ) .  Even un imodu lar  l a t t i c e s  

e x i s t  on ly  ( i for  Euc l idean spaces) in d = 8k, k = 1,2 . . . .  For Mink- 

owski type spaces 36) w i t h  m t i m e - l i k e  d imensions out  o f  a t o t a l  o f  d, 

the s i g n a t u r e  is  s= d-2n,  and has to be a m u l t i p l e  of  8 to a l l ow  even 

un imodu lar  l a t t i c e s ,  

d = 8k + 2n (3 .1 )  

I have noted t h a t  t h i s  is  p r e c i s e l y  the c o n d i t i o n  f o r  the sp i no r s  

in t h a t  space to a l l ow  both  Weyl and Majorana c o n d i t i o n s  37).  These 

r e s u l t  from the d i m e n s i o n a l i t i e s  o f  C l i f f o r d  a lgebras  f o r  the va r i ous  

m e t r i c s .  

Return ing  to the even un imodu lar  l a t t i c e s ,  we observe t h a t  there  

is  one such l a t t i c e  in k=1 ( t h i s  is  E8),  two in k=2, namely E 8 x E 8 

and D16 ( g e n e r a t i n g  S 0 ( 3 2 ) / 7 2 ) .  In k=3, there  are 24 such l a t t i c e s .  

Of these ,  23 correspond to va r i ous  semi -s imp le  or o the r  d i r e c t  p roduct  

L ie a l g e b r a s ,  and one, the Leech l a t t i c e  38) AL, t ~ o n l y  l a t t i c e  up to 
2 24 d imensions whose s h o r t e s t  v e c t o r  has norm p =4. Note t h a t  in 32 

d imensions there  are more than 108 un imodular  l a t t i c e s •  

The number u 2 o f  vec to rs  f o r  each norm in the Leech l a t t i c e  is  
g iven by the fo rmula  39) (here  p2=2v) 

65,520 
U2v(AL) - 6 9 i  " ( ~ i i  (v )  T(V))  (3 .2 )  

O l l ( V )  is  the sum of  the e leven th  powers of  the d i v i s o r s  o f  v,  and 

• (v )  i s  Ramanujan's f u n c t i o n .  This y i e l d s  

u 4 = 196,560 ; u 6 = 16,773,120 ; u 8 = 398,034,000 (3 .3 )  

Conway 40) de f ined  the group "~0" ( o f  o rder  8 ,315 ,553 ,613 ,086 ,720 ,000)  

o f  a l l  Euc l idean congruences C f i x i n g  the o r i g i n )  of  A L, This o rder  is  

deri :ved as a product  o f  

l ,OI  = u 4 x 93,150 x 210 x IM22 I (3 .4 )  

where IM221i:s the o rder  of  t h a t  Mathieu group, one o f  the (now known 
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to be) 26 " s p o r a d i c "  s imp le  f i n i t e  groups. By t a k i n g  the q u o t i e n t  o f  
• 0 by i t s  cen te r  { I , - i }  ( the r e f l e c t i o n - p a r i t y ) ,  Conway got y e t  another  

s imp le  " s p o r a d i c "  group,  

" . I "  = " - 0 " / i ( 2 )  ( 3 . 5 )  

Using " . 1 "  and the p r o p e r t i e s  of  the Leech l a t t i c e ,  Gr iess  and F i sche r  

d i scove red  41) the "Monster"  or " F r i e n d l y  G ian t "  F 1, the l a s t  and 

l a r g e s t  o f  the " s p o r a d i c "  s imp le  f i n i t e  g r o u p s , o f  o rde r  ~ I055.  I t  

con ta ins  20 o f  the spo rad ics  as q u o t i e n t s  of  F 1, b~ some subgroups 

( " t h e  Happy F a m i l y " ) ;  5 are c l e a r l y  not  con ta ined  ( the  " P a r i a h s " )  and 

f o r  one ( J l '  o f  o rde r  175,560, the "wicked dwar f " )  i t  i s  s t i l l  not  

known whether  or not  i t  i s  con ta ined  in F I .  The c o n s t r u c t i o n  of  F I 

has a l r e a d y  been used to suggest  a new s u p e r s t r i n g  model in  Physics 42) 

f o l l o w i n g  a genera l  "encouragement"  in Ref .24 .  

By t a k i n g  the q u o t i e n t  o f  the Leech l a t t i c e  by i t s  double 

M = AL/2A one de f i nes  a 24 -d imens iona l  vec to r  space over  a f i e l d  o f  

c h a r a c t e r l s t i c  2, F 2. For any pr ime p, there  are " e x t r a s p e c i a l "  

groups 43) p o f  o rder  p2n+ l ,  w i th  p2n l i n e a r  cha rac te r s  and ( p - l )  

f a i t h f u l  i r r e d u c i b l e  c h a r a c t e r s  of  degree pn, one f o r  each p r i m i t i v e  

pth roo t  o f  u n i t y .  Here we use the e x t r a s p e c i a l  group Q, o f  o rde r  

224+I I t  thus has an i r r e d u c i b l e  r e p r e s e n t a t i o n  VQ o f  o rde r  212 

(note t h a t  t h i s  is  the d i m e n s i o n a l i t y  o f  a Weyl-Majorana rea l  sp i no r  

in  26 -d imens iona l  Minkowski space) .  A f i n i t e  group C is  cons t ruc ted  

out  o f  Q and ( . 1 ) .  The F r i e n d l y  G ian t  F I i s  de f i ned  as a group con- 

t a i n i n g  an i n v o l u t i o n  ~, w i t h  C as c e n t r a l i z e r  ( i . e .  the e lements 

commuting w i t h  0 ) ,  

F 1 = <C,o> (3 .6 )  

F 1 and C have a r e p r e s e n t a t i o n  o f  d imension 196,884, denoted B. 

module B i s  endowed w i t h  the s t r u c t u r e  o f  a commutat ive non- 

a s s o c i a t i v e  a l g e b r a ,  

This 

b l  %B b2 ÷ b3 , W- b i E B (3 .7 )  

w i t h  a symmetr ic  nondegenerate a s s o c i a t i v e  b i l i n e a r  form. The produc t  

%B i s  p reserved  by o. In f a c t  F 1 can be de f i ned  as FI= Au t (B ,SB) .  

Note the s p l i t  ( i n  f a c t ,  B can be c o n s t r u c t e d  as the union)  of  

dim B = 196,884 = 24 8 98,280 8 98,280 8 300 (3 .8 )  

The sum of  the f i r s t  two subspaces ( the c o n v e n t i o n a l  n o t a t i o n  we put  
I I  : in  b e t w e e n  q u o t a t i o n  marks )  "B 1 V 1 ~ V 2 i s  24 x 212 The sum o f  t h e  

second and t h i r d  dim (V 2 ~ V 3) = u4(AL) .  They are l i n k e d  by a p a r i t y -  
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l i k e  morphism exchanging "BI"=V 1 wi th  "B2"=V 3. The l a s t  subspace 

V 4, dim V4= 24(24+1)/2 , corresponds to a symmetric SO(24,R) tensor ,  

or to the number of  t ransverse  ( i . e .  phys i ca l )  components of  a 

symmetric (massless) tensor  ( l i k e  g ~ v ) i n  26 Minkowskian dimensions;  

i t  can in f ac t  be s p l i t  i n to  299~I,  by e x t r a c t i o n  of  the t race ,  

l eav ing  dim "B, "=  299. Note also tha t  i fwe remove tha t  s i n g l e t  from 

(13,8) we f i nd  dim B = 196.883 = 47 x 59 x 71, the product  of  three 

primes. 

There are var ious ways of  c o n s t r u c t i n g  Ae, e i t h e r  from t ~ o t h e r  

24-dimensional  l a t t i c e s  (the Niemeier l a t t i c e s )  44),  or by combining 

var ious products 45) of E 8. 

Return ing to Kac-Moody algebras ( 2 .19 ) ,  we can now 

c h a r a c t e r i z e  the ro le  of  the i n t e g r a l  l a t t i c e  genera t ino  i t ,  i . e .  the 

l a t t i c e  spanned by the root  diagram of the genera t ing  Lie a lgebra 

(2.15) .  Frankel  and Kac 28) used " ve r t ex  opera to rs "  (p~ is the momentum 

in d-d imensional  space, z i s  a Mandelstam-type i n v a r i a n t  energy 

v a r i a b l e )  

S ~ z n) z pp ~ ( o )  V(p,z)  = z p/2 exp(p ~ ~ n ~-n x 
n>o (3 .9)  

i z-n) eip~q ~ x exp(-p u Z ~ ~ 
n>o n 

In the adap ta t ion  to Kac-Moody a lgebras ,  the p~ are i d e n t i f i e d  w i th  

the l a t t i c e  root  vec to rs .  This means tha t  the d i m e n s i o n a l i t y  o f  the 

momenta !s tha t  o f  the l a t t i c e  §pace! Only the Cartan subalgebra 

H(G)c G plays a ro le  in the a f f i n i z a t i o n  of  G in to  Ko Moreover, the 

r e p r e s e n t a t i o n  of  the a f f i n i z a t i o n  of H, 

K H : S ' ÷  H (3 .10)  

a l ready  spans the e n t i r e  K. For s t r i n g s ,  the d i m e n s i o n a l i t y  of  the 

embedding space is thus the d imens iona l i t y  of  t ~ C a r t a n  subalgebra,  

or of  the l a t t i c e  
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4. Physica l  A p p l i c a t i o n s  

The p i c t u r e  in which s p a c e - t i ~ i s  embedded in the  Cartan sub- 

a lgebra of  a simple group was a l ready p resen t i n  Extended Supe rg rav i t y .  

Cremmer J u l i a  and the l a t e  Joel Scherk 46) cons t ruc ted  N=8 Supe rg rav i t y  

by work ing out N=I Superg rav i t y  in D= i l  d imensions. They were sur-  

p r i zed  to d i scover  tha t  the theory  possessed a symmetry under a non- 

compact form of E 7. When in the D=I1 mani fo ld  we assume tha t  space- 

time is 3- or  5- d imens iona l ,  the in te rna l~symmetry  becomes E 8 or E 6 

co r respond ing l y .  J u l i a  and Th ie r r y -M ieg  47j ha~checked  tha t  t h i s  is 

t rue f o r  any space- t ime dimension d~ D. 

D=l l  Supe rg rav i t y  has SL( I1 ,R)  as covar iance group, i . e .  the Lie 

a lgebra is AIO. When we reduce space- t ime to d d imensions,  i t s  

covar iance invo lves  A d _ I C A I o ,  l eav ing  the p o s s i b i l i t y  o f  an i n t e r n a l  

symmetry w i th  rank lO-d+ l .  

Turning to s u p e r s t r i n g s ,  we have recen t l y  seen the e x p l o i t a t i o n  

of  the anoma ly -cance l l i ng  q u a l i t i e s  of  ?16 ( the S0(32) /7 (2 )  Cartan sub- 

a lgebra)  and r 8 x 78 ( i . e .  E 8 x E8) in the Pr ince ton  " h e t e r o t i c "  
model 30 '31)  I t  is  cons t ruc ted  by work ing on the l i g h t - c o n e ,  and 

segrega t ing  the r igh t -movers  from the l e f t - m o v e r s ,  t r e a t i n g  the two 

sets o f  f i e l d s  asymmet r i ca l l y .  The r igh t -movers  make a ten-  

dimensional  s u p e r s t r i n g ,  w i th  e i g h t  t ransverse  bosonic x i ( ~ - o )  and 

e i g h t  Majorana-Weyl %a(T~o), w i th  i = 1 . .  a=1 . .8 .  The l e f t - m o v i n g  

sec to r  is  bosonic and 26-d imens iona l ,  w i th  e i g h t  t ransverse  

~ i (~+~)  and s i x teen  " i n t e r n a l "  ~I(~+~,),  1 1 . . . .  16, 

~ I  I I (~+~)  + i ~ i ~I e -2 in(T+~)  
X (~+~'). = x + P ~ n~o ~ ~n 

(4.1) 
[~I ~J~ ½ mn,m m] = n 5m+n,o 51J , ix  I , p J ]  = i aIJ 

½ ( t h e  f a c t o r  i s  due to  t h e  d e p e n d e n c e  on ~ + ~ )  o n l y )  

~I  i s  made to  p a r a m e t r i z e  a c o m p a c t  s p a c e ,  a t o r u s .  T h e r e  a r e  s t a b l e  

t o p o l o g i c a l  c o n f i g u r a t i o n s  w h e r e  (R i s  a r a d i u s )  

X(~)  = ~ + 2 ~ ' p  • + 2 NR~ + . .  4 4 . 2 )  

w i n d s  N t i m e s  a r o u n d  t h e  m a n i f o l d  as  ~ r u n s  f r o m  o t o  ~.  The momenta  
p I  a r e  q u a n t i z e d  i n  R - 1  u n i t s .  The t o r u s  T i s  " m a x i m a l " ,  a p r o d u c t  o f  

c i r c l e s  of  equal r a d i i  R = (~ ' )½ = /~ ,  i d e n t i f y i n g  po in ts  accord ing to 

I ni (4 .3)  X I ~ z I + ~'2"~R Z e i 
i = l  

I where the e i are the s i x teen  fundamental roo t  vec tors  of an E 8 x E 8 

l a t t i c e ,  w i th  norm 
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1)2 2 (4.4) (e i = 

This i m p l i e s  t h a t  
16 

I e I. det  g = 1 (4 .5 )  
g i j  = ~=i  ei J ' 

( a l t hough  a more " n a t u r a l "  i d e n t i f i c a t i o n  would be t o rega rd  the e~ as 

i n v e r s e  " t e r a d s " ) .  The momenta are 

16 I 
pl = ~ n i e i (n i i n t e g e r )  (4 .6 )  

I = I  

i . e .  the momenta span the l a t t i c e  v e c t o r s .  They must equal the winding 
I numbers N The s t r i n g  mass o p e r a t o r  is  

1 M 2 ~ ½ I )2  ~' = N + ( N - I )  + ~ (p (4 .7 )  
I 

N counts the r i g h t  movers, N the l e f t  movers, i . e .  
+ - 

N = p + s o- , N = p :mo  : 

The s u b t r a c t e d  u n i t  comes from normal o r d e r i n g  c o n s i d e r a t i o n s  and 

Loren tz  i n v a r i a n c e .  In a d d i t i o n ,  one has to c o n s t r a i n  

, : i + ½ (p l )2  (4 .8 )  

i m p l y i n g  t h a t  the u n i t a r y  o p e r a t o r  s h i f t i n g  ~ to ~+A in X i ,  ~ i ,  ~I 

does not  a f f e c t  p h y s i c a l  s t a t e s  in the spectrum. This o p e r a t o r  is  
½ ~( ~ 2 exp 2 i AfN-N+I- L,p I,  ]. The constraint removes the left-mover 

tachyon from the physical Hi lbert  space. 

The states l i or a>R x ~JIIO>L span N=I,D=IO supergravity. The 

states l i or a> R x ~! i  I o> L and li or a> R x IpI>L reproduce the N=I, 

b=10 super-Yang-Mills mul t ip let ,  with gauge group E 8 x E 8 (or S0(32)). 

As the la t t i ce  has Uo=16, there are 16 neutral vector mesons (plus 

the i r  supersymmetric partners), corresponding to a U(1) 16 isometry of 

the torus. The u2= 480 other root vectors complete E 8 x E 8. The model 

including interact ing str ings, is Lorentz and E 8 x E 8 invariant. The 

one-loop diagrams are unitary (due to theself-dual l a t t i ce )  and f i n i t e .  

The hexagonal anomalies are cancelled. 

Chapline 42)" has suggested a model in which the gravitat ional and 

Yang-Mills pieces of the superstring are constrained by the action of 

a f i n i t e  group~ The str ing is basedon the Leech la t t i ce  A L. Here the 

mass operator is ( I = i . . . 2 4 ) ,  the transverse dimensions) 

I I M2 = Z ~_n~n i + ½ ~ ( p l ) 2  (4 .9 )  
n>o I 
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w i th  u2u as in (3 .2)  andT ( 3 . 3 ) .  We see tha t  fo r  M2=o we have the 24 

s ta tes  generated by ~CI" For M2=I, we get c o n t r i b u t i o n s  from 

I 24 s ta tes  

I J ~-1 30 s ta tes  (o r  299+1) 

( p l ) 2  , i . e .  the 196.560 s ta tes  fo r  u 4 momentum vec to rs ,  

a l t o g e t h e r  196.884 s t a t e s ,  thus spanning the a lgebra B of  ( 3 . 8 ) .  

Supersymmetry is generated by the morphism exchanging V 2 and V 3. The 

B I s t r u c t u r e  f i t s  a 26-d imensional  g r a v i t i n o .  F I and ~ of  (3.6)  con- 

s t r a i n  the e n t i r e  system. 

One cannot use c o m p a c t i f i c a t i o n  to a to rus ,  as t h i s  w i l l  leave no 

p o s s i b i l i t y  of  having two " o r d i n a r y "  space-t ime curved t ransverse  

dimensions.  

The d e t a i l s  of  the model have not  been worked out  to date.  
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FINITE-SIZE SCALING AND IRREDUCIBLE REPRESENTATIONS OF VIRASOR0 ALGEBRAS 

V. Rittenberg 
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West Germany 

I .  INTRODUCTION 

It is the aim of this talk to show the connection between the spectra of one- 

dimensional quantum chains at the critical point with different boundary conditions 

and certain irreducible representations of Virasoro algebras. We confine ourselves 

to the finite-size~;scaling limit (to be defined later) of the spectra although in 

the last Section we will also consider correction term~ 0ne-dimensional quantum 

chains are related to the transfer matrix of two-dimensional spin systems I ,2) and 

are relevant for the understanding of critical phenomena in statistical mechhnics. 

In order to illustrate the problem, I will take an example which is the three- 

states Potts model which is simple enough in order to be handled with the available 

numerical methods and has a very rich structure. 

The model is defined by the Hamiltonian 
h# 

= $ ~ '  ( 1 . 1 )  
• , & 

where X is the inverse of the temperature and N represents the number of sites, 

and F are the matrices (00) (00  
~ '  ---- 0 t,~O ~"~ = 1 0 0 (1 .2 )  

0 0 ¢ , o  ~" ~ 0 1 0  

=_i 
and ~ = e, 3 . The Hamiltonian has a critical point at %=I. We specify the boun- 
dary 
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and get the Hamiltonians H (Q/. If we take FN+I=0 (free boundary conditions) we have 

H (F~'. The overall factor 2/(3 ~) in the Hamiltonian (1.1) (which fixes the eucli- 

dean time scale in a conformal theory) is taken from Ref. [ 3]. ~ F 

Since the Hamiltonian (1.])is Z~ invariant, each of the matrices H (Q) and H ( ) 
~ (F) 

has a block-diagonal form H~(H~ ) corresponding to the charge sector Q=0,1 and 2 
; (F) ~ ~ 2) 

of H~(H ). At %=I self-duality and the invariance under charge conjugation of 

the Hamiltonian (1.1) give the following relations among the spectra: 

H~Q% = H~ Q), H$ ~) = H~ ~ , HSF) = H~F) (1.4) 

and we are thus left with five independent spectra: 

, , H 0 , (I .5) 

In the case of periddical (H~ 0), ( H~ 0)) ( and twisted (H~ I)) ( boundary conditions we can 

further prediagonalize the spectra using translational invariance and we will denote 

by E~Q)(P) ~ the energy levels corresponding to the momentum P(P=0,1,2...). For free 

boundary ~ condition one can use the invariance under parity of the Hamiltonian H (F) 
(F) + ~(F) to prediagonalize the spectra and we denote the levels by E^ ( ) (SQ (-)) cortes- 

(p) 
pending to the positive (negative) parity states. We denote by E the ground-state 

energy of H~ 0) ~ and E (F) the ground-state energy of H~ F) ~ 

We now consider the following quantities which are relevant for finite-size 

scaling: 

(I .6a) 

(1.6b) 

These quantities can be evaluated numerically diagonalizing the Hamiltonian for 
• 4) different number sites N and using Van den Broeck-Schwartz approx1mants to evaluate 

t~e limits in Eqs.(1.6a,b). Notice the appearance of a factor 2 in Eq. (1.6a) and 

its absence in Eq. (I°6b). This is no misprint and the ground for this mismatch will 

be explained later. 

Other quantities of interest are the large N behaviour of the ground-state 

energies pro site: 



330 

~ce) ~ce~ 
~ . - = - A o  - w-~ . . . .  

(1.7a) 

L _ _ A o - - ~  - ~ .  . . . .  
t,,/ 

( 1 . 7 b )  

• ( P )  
The numbers  A 2 , 

As will be shown in the next two Sections, the quantities 

(P) and " (F) A 2 , A 2 can be understood algebraically. 

. ( F )  
A F) and A 2 can be estimated ntmaerically. A 0 is known exactlyS): 

~) (F) 

2. CORRELATION FUNCTIONS ON A STRIP (PERIODIC AND TWISTED BOUNDARY CONDITIONS) 

In a conf©rmal invariant theory in two dimensions, to each primary field ~X,Y) 

one associates two numbers A, ~ and the two-point correlation function is completely 

determined 6 ) : 

( 2 . 1 )  

where z=X+iY, z=X-iY. The quantities x=A+~, s=A-A are called the scaling dimension 

and the spin of the operator ~ . Note that the right hand side of Eq. (2.1) fixes 

the normalization of the field ~ . The three-point function is also fixed by con- 
. . 6) 

formal invarzance : 
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The c, ~ A's are called expansion coefficients are also in principle fixed by the 

6) 
confermal theory 

Under a conf~rma~ transformation w--w(z) the correlation function of primary 

fields transforms asfollows: 

• 7). 
We consider now the conformal transformatzon , 

~- (2.4) 

which maps the plane into the strip (- ~i.~ ~O'~ ~_~ ~ -- oo < " r _  < 0 o  ). 

As the result of the transformation (2.4), the two-point function (2.1) has the fol- 

.lowing form on the strip: 

=(w} ~,K=~ A 3  O" E'C'z'X" ) " 

e 

where 

O"t~('°(') : p.I. l ~ t ~  (2.6) 

Assume now that the euclidean time (~) evolution of the system is given by a 

Hamiltonian H with eigenstates. IEt(~)>: 

(2,7a) 

(2.7b) 

where~ is the momentum operator. Using the standard spectral decomposition, the 

correlation function (2.5) can be reexpressed as follows: 
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,< '-£('g',~,,-c.,3 q*c,'u"~,'z,..~ b -= < o  I ~(v-..,,-~,,3 ~c 'u ' , ,w,~ )o '> 

= I ~' Iv 
"~,,@ 

• [ < o l  ~ro ,  o'~ ~ E t c e ) > l "  
(2.8) 

here E (P) is the energy of the g~ound-state I0>~ We now compare Eqs. (2.5) and (2.8) 

and get the following identities: 

(2.10) 

Eq. (2.9) is of the form (1.6a). Eq. (2.10) needs further interpretation. When dea- 

ling with a quantum chain, the boundary condition is ~ixed (see Eq. (1.3)), and the 

momenta P will have the values: 

"~ = ( ~ +  A ~ -  ( ~ @ ~ -  OL (2.11) 

where a is fixed by the boundary oondition. The valu~ of a are ~ for the boundary 

condition of Eq. ~1.3). 

We are now in the position to make the connection with the Virasoro algebras. 

We assume 6) that the spectrum (2.9) is given by two Virasoro algebras with the same 

central charge c, A and ~ corresponding to the lowest weights of the two irreducible 

representations one corresponding to one Virasoro algebra, the second to the other 

Virasoro algebra, r (r) represent then the descendents of A(A). If the descendent 

r(~) has the degeneracy d(A,r)(d(A,~)), the energy level (&+r+~+~) has obviously the 

degeneracy d(A,r)d(A,r). 

For the three-states Potts model, the central charge is c~ and the possible 

values for A are8'9): 
.2 

A = 0, 1140, I115, 118, 2•5, 21140, 2•3, 7151 1318, 3 (2112) 

the possible values for ~ cover clearly the same range. The degeneracies d(~,r) can 

be computed using the character formula of Rocha-¢aridi I0) and this calculation was 
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show the results 
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11) for the first 10 values of r. In Table 1 we 

0 

2/5 

1/4o 

7/5 

!21 /40  

1/15 

3 

13/8 

2/3 

1/8 

r 

0 1 2 3 4 5 6 7 8 9 10 

1 0 1 1 2 2 4 4 7 8 12 

1 1 1 2 3 4 6 8 11 15 20 

1 1 2 3 4 6 9 12 17 23 31 

1 1 2 2 4 5 8 10 15 19 26 

1 1 2 3 5 7 10 14 19 26 35 

1 1 2 3 5 7 10 14 20 26 36 

1 1 2 3 4 5 8 10 14 18 24 

1 1 2 3 4 6 9 12 16 22 29 

1 1 2 2 4 5 8 10 15 19 27 

1 1 1 2 3 4 6 8 11 15 20  

Table I The function d(A,r) representing the degenerany of the 
level (A,r) of the irreducible representation with low- 
est weight A. 

We now formulate our problem. For each of the ntmlerically determined spectra 

--'~0)(p), ~0)~p)r and ~1)(p)" (see Eq. (1.6a))one has to find the irreducible 

representations (A,A) (there are one hundred o~ them) which build the spectrum. This 

is done using Eqs.(2.9) and (2.11) and Table I. The answer to this problem is given 

in Sec. 4. 

As the reader might have noticed up to now we have only considered differences 

of energy levels. It was shown however (see Ref. [12]) that the finite-size correc- 

tion to the ground-state energy E (P) (see Eq. (1.7a)) has an algebraic meaning: it is 

related to the central charge c of the Virasoro algebra: 

Ac.~ ~ c Z 6 (2.13) 

This relation was checked and the results are also given in Sec. 4. 

3. CORRELATION FUNCTIONS ON A STRIP (FREE BOUNDARY CONDITIONS) 

We consider the two point correlation function in a half plane (-=<X< ~, Y$0) 

with free boundary conditions. If we are at the critical point and the operator 

has scaling dimensions x, it was shown by Card~ 3) using conformal invariance that 

the correlation function has the form: 
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--'JC 
(3.1) 

where 

~4_~ ~ ~_ ~ ~4_yz~ ~- (3.2) 

The function F(~) depends on the operator ~ which appears in the correlation func- 

tion and has the following asymptotic behaviours: 

where the function R(~) is regular at ~ = 0 and x S 
We now perform the =onformal transformation: 

(3.3) 

is the surface exponent 7'14) 

(3.4) 

which maps the half-plane on the strip (-oo<T<oo, ~N <v<~). Here T can be interpreted 

as the Euclidean time. The correlation function on the strip reads (see Eq. (2.3)) 

where a 0 is independent of v I and v 2. Assume now that the Euclidean time evolution of 

the system is described by a Hamiltonian H with eigenvalues E(F)(r) (E(F)<E(F)(0) < 

<E(F) (I)<...): 

HIr> = E(F)(r)Ir> (3.6) 

E (F) being the ground-state energy. Using the spectral decomgosition, the correlation 

function of Eq. (3.5) can be reexpressed as follows: 
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CF) _ CF)- - _( , -  c~3-t: )1%-%) 

(3.7) 

In the sum over the r's one has to keep in mind that several states can correspond 

to the same energy level E(F)(r). 

Comparing Eqs. (3.5) and (3.6) we notice the relation 

fl__ ( ECV~c~.3 - e c ~  ) -. ~ , ' , . ,  c ,- = o, ~ , . .  
1T 

(3.8) 

We now recall that the known surface exponents x s coincide with lowest weights A of 

irreducible representations of the Virasoro algebra with the central charge c fixed 

by the universality class 13'15). The relation (3.8) then suggests that the finite- 

size limit of the spectrum of the Hamiltonian with free boundary conditions is given 

by the loweEt weight and the descendents of irreducible representations of the Vira- 

soro algebra. Notice that in this case we h~ve only one Virasoro algebra instead of 

the two which occur for periodic and twisted boundary conditions (see See. 2). 

We now return to Eq. (1.6b) and formulate the problem in the case of free boun- 
(F) ~ ~F)(±) dary conditions. We first compute numerically the spectra ~0 ( ) and 

we thus get the spectra 

= Z o C+3 + ~o C-3 

C~ CF') ,._ CF:3 CF) 
= "~  C+3 ~ c Z  4 C - 3  

(3.9) 

We next look which irreducible representations A the list (2.12)give contributions 
~(F) 

and ~F)" The answer is found in Sec. 5. to --0 

Finally, as in the periodic mase, part of the finite-size =orrections to the 

ground-state energy E (F) (see Eq. (1.7b)) are again controlled by the central charge 

c. One has 15)" 

A CF5 "~" c 
Z~ (3.10) 

How this relation works will be seen in Sec. 5. 
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4. IDENTIFICATION OF THE IRREDUCIBLE REPRESENTATIONS (PERIODIC AND TWISTED BOUNDARY 

CONDITIONS) 16) 

We start with "~(~0)(P) (see Eq. 1.6a)). The lowest excitations of the quantum 

chains of lengths up tp 14 sites have been used in order to determine the Van den 

Broe~k-Schwartz appr©ximants. The results are shown in the right-hand side of Table 2. 

One notices: 

a) The approximants degeneracy of levels (see for example the cluster at 

(A+r+~+~) = 2.8 at P=2) 

b) The exact degeneracy for any number of sites of o~her level (see the level 2.79 

at P=0). This refSe~ts a supplementary internal symmetry of the problem which 

is unknown to us. 

The approximate degenerate levels and the exact degenerate leve~coincide for large N 

and build the Hamiltomian in the finite-size scaling limit. Using Eqs. (2.9), (2.11), 

(2.12) a~d Table I we have found that the irreducible representations (0,0),(2/5,2/5), 

(7/5,2/5),(2/5,7/5), (7/5,7/5), (3,0) and (0~3) give a perfect description of the 

levels. A sure bet is that the representation (3,3) is also present but it would 

have shown up at (A+r+A÷~) = 6 (P=0) and this goes beyond our numerical ability 

A+r+ 
2~+¥ (0,03 !C.~ 

0 . 8  1 
2 . 8  - 1 
4 . 0  1 - 
4 . 8  - 1 

1 1 . 8  - 1 
3 . 8  - 1 

2 2 1 - 
2 . 8  - 1 
4 . 8  - 2 

3 3 1 - 
3.8 - 2 

Table 2 

1 1 1 

1 1 1 

1 
1 1 1 

1 
li 2 1 

1 

(3,o) ~0) (p) ( - ~"X-p ~) 

0.820(3) 
2.79(I )*;2.81 (2) ;2.832(2) 
3.996(4) 
4.77 (2)*;4.82(2) ;4.83(I ) 

I .798(3) ;1.824(4) 
3 . 7 8 ( 2 )  ; 3 . 7 8 ( 1 )  ; 3 . 8 2  ( 1 )  ; 3 , 8 3 ( 2 )  

1 . 9 9 9 9 8 ( 4 )  
2 . 7 7 ( 8 )  ; 2 , 8 ( 1 )  
4.75(6) ;4.77(5) ;4.82(4) 

2. 995 (5) ;2. 999 (I) 

The spectrum ~o(O)(P). ~ Van den Broeck-Schwartz approximants for the 
level are denoted by ~ ~(P) ("Exp."). The contributions o~ each irrep. 
(A,A) to the spectrum ~s shown. The nt~nbers under each (A ~) indicates 
the degeneracy. The levels marked by an asterisk are doubly degenerate 
(parity doublets) even for finite chains. The spectrum for negative mo- 
menta is the same as for positive momenta. The figure in brackets in the 
last column indicates the estimated error. 

The exerciso was repeated in Tablo 3 for and in Table 4 for 
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i 

A+r+A+r 

2/25 ~ 0.133 

4/3 w 1.333 

32/15 m 2.333 

10/3 ~ 3.~3 

62/15 ~ 4.~33 

16/3 = 5.333 

17 /15  ~ 1 .133  
7 / 3  ~ 2 . 3 3 3  

4 7 / 1 5  i 3 . 1 3 3  
1 3 / 3  ~ 4 . 3 3 3  

3 2 / 1 5  m 2 . 1 3 3  
1 0 / 3  ~ 3 . 3 3 3  
62 /15  ~ 4 . 1 3 3  

4 7 / 1 5  ~ 3 . 1 3 3  
13 /3  ~ 4 . 3 3 3  
77 /15  ~ 5 . 1 3 3  

I£ 

Table 3 The spectrum 

I - 0 . 1 3 3 3 ( I )  
- I I . 3 3 3 3 ( 5 )  
I - 2 . 1 3 9 ( I )  
- I 3 . 3 3 3 ( 4 )  
4 - 4 . 1 3 ( 2 ) * ; 4 . 1 3 8 ( 5 ) ; 4 . 1 8 ( I )  
- 4 5 . 3 1 ( 7 ) ; 5 . 3 3 3 ( I ) * ; 5 . 3 3 4 ( 5 )  

I - I • 1344 (5 )  
- I 2 . 3 3 2 ( 5 )  
2 - 3 . 1 0 ( 5 ) ; 3 . 1 3 ( 5 )  
- 2 4 . 3 2 9 ( 5 ) ; 4 . 3 3 2 ( 3 )  

2 - 2 . 1 3 2 ( I ) ; 2 . 1 3 4 ( 3 )  
- 2 3.32(2) ;3.332 (6)~ 

3 - 4.12(3);4.124(5) 

3 - 3.13(2~ ;3.13(I) ;3.13 (3) 

- 2 4.3(I);4.33(2) 

5 - 5.15(5) 

~0)(p). Double degeneracy marked by * as in Table 2. 

-2 

-I 

5/3 "~ 1.666 - I - - 1.656(5) 

37/15 ~ 2.466 2 - - - 2.39(I);2.5(I) 

67/15 ~ 4.466 3 - 3 - 4.28(2);4.4(2);4.4(I) 

0 

2/3 ~ 0.666 - 1 - - 0.66666(3) 

27/15 ~ 1.466 I - - - 1.47(2) 

52/~5 ~ 3.466 2 - 2 - 3.45(2);3.47(2);3.48(I);3.51(3) 
14/3 ~ 4.666 - 2 - 

7/15 ~ 0.466 I - 0.4667(3) 

37/15 ~ 2.466 I I - 2.460(5);2.478~2) 

11/3 ~ 3.666 - 11 - 3.665(8) 

67/15 ~ 4.466 2 2 - 4.45(2);4.44(I) 

22/15 ~ 1.466 I I - 1.466(5);1.469(2) 

8/3 ~ 2.666 - I - 2.667(2) 

52/15 ~ 3.466 I I - 3.45(2);3.47(2) 

14/3 ~ 4.666 - I - I 4.67(5) 

37/15 ~ 2.466 I - I 2.43(3);2.44(6) 

11/3 ~ 3.666 - I - I 3.65(2);3.663(3) 

67/15 ~ 4.466 2 - 2 4.4(I);4.46(4);4.47(5) 

Table 4 The spectrum r~ (~1~(p) In this case bhe 
• ] " • . 

zs different £han for posztzve momenta. 
spectrum for negative momenta 
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In conclusion the following 18 irreducible representations describe the spectrum 

with periodic and twisted boundary conditions: 

~ (~)(P): (0,O), (2/5,2/5),(7/5,2/5),(2/5,7/5),(7/5,7/5), 

(3,0),(O,3),(?) (3,3) (4.]a) 

~ (?)(P): (I/15,1/15),(2/3,2/3) (4.1b) 

~(1)(P): (2/5,1/151,(0,2/3),(7/5,1/15),(3,2/3) (4.1c) 

(~(2)(p): (I/15,2/5),(2/3 O) (I/15,7/5),(2/3,3) (4.1d) 
7~ I ' ' 

The spectrum ~(~)(P) was obtained directly from ~(I ])(P) using Eq. (1.4). 

Finally the prediction (2.13) on the finite-size correction to the ground state 

energy was checked. One Obtains 

6 ,(P)- 0.80008(1) (4.2) A2 

in excellent agreement with the expected value c=4/5. 

5. IDENTIFICATION OF THE IRREDUCIBLE REPRESENTATIONS (FREE BOUNDARY CONDITIONS) 17) 

The lowest excitations for the Hamiltonian H (F) have been determined using the 

Lanczos method considering chains up to 12 sites. Van den Broeck approximants for 

~F)(±)- are shown in Table 5 and those for ~(F)(±)I (see Eq. (l.6b) for the defini- 

tion) are shown in Table 6. 

A+r (O) (3) 
(F) (_) ("EY-.~"') 

2 /l - 2.000(5) 

3 l ] - 

4 2 1 4.O04(6),3.995(8),4.01(3) 

5 2 2 - 

6 4 3 5.97(5),5.98(4),5.99(6),5.8(2) 

7 4 4 - 

2.99(2),2.98(3) 

4.98(3),4.98(2),5.00(3),4.99(3) 

7.0(2),6.9(3),>6.6(?) 

Table 5 The spectrum ~(F) for the 3-states Potts model in the charge zero sector. 
The Van den Bro~ck-Schwartz approximants for the levels with positive parity 
(~F)(+)) and negative parity (~F)(.)) are given. The figure in brackets 
in the last two columns indicates the estimated error. On the left side of 
the table we indicate the number of states having ~F)=&+r generated by the 
irreducible representations ~=0 and 3, 
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A+r (~) 

~ =0.6666... I 

1 . 6 6 6 6 . . .  ] 

2.6666... 2 

3.6666... 2 

4.6666... 4 

5.6666... 5 

6.6666... 8 

7 . 6 6 6 6 . . o  10 

Table 6 

0.6662(4) 

2.66(I),2.68(4) 

4.65(4) ,4.66(3) ,4.68(3) ,4.67(2) 

6.6(2),6.55(10) 

1 . 6 6 8 ( 2 )  

3.64(4),3.66(2) 

5.58(8),5.65(7),5.65(5), 

5.66(6),5.66(4) 

•>7.5(?) 

The spectrum ~ I F) for the 3-states Potts model in the charge one sector. 
The Van den Broeck-Schwartz approximants for,the levels with positive parity 
(~F)(+)) and negative parity (~(F)(_)) are given. ,On ~he left side of 
the table we indicate the number 9~ states having ~$F)~ + r generated by 
the irreducible representation ~3" ° - 

We have then used Eq. (3.8) and checked from the possible values of A(Eq. (2.12)) 

and the degeneracies given in Table l which irreducible representations build the 

spectra. The conclusion is: 

(F) co 
-- ~O : (O), (3) (5.1a) 

(F) : (2) (5.]b) 

Finally, we have checked the prediction (3.10) on the finite-size corrections to the 

ground-state energy E (F) (see Eq. (3.10)). 

One finds: 

~- A224 .(F) = 0.792(]) (5.2) 

again in excellent agreement with c=4/5. 

6. CORRECTIONS TO FINITE-SIZE SCALING (PERIODIC AND TWISTED BOUNDARY CONDITIONS) 18'19) 

The reader might wonder why in Sec. 2 we have introduced the three-point function 

(see Eq. (2.2)) and the expansion coefficients C~,~,~without~ further use. In this 

section we will show that they are essential in the understanding of the corrections 

to finite-size scaling. 
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Let us consider an energy level corresponding to the lowest weight of an irre- 

ducible representation (A,~), with sealing dimensions x=A+~ and spin s=A-~. This 

corresponds to taking r=r in Eqs. (2.9) and (2.11). Our task is to understand the 

nature of the correction terms: 

(A,7;N) = ~ (Eo(A-~-a)-E(r)) 

= X+ClN-~ 

(6; 1)  

where E (A-V-a) is the lowest energy level from the set E (P) with momentum 
o t 

P=&-~-a. In Table 7 we show the values of ~ and c I determined from the knowledge of 

the energy levels for various number of sites N. Notice that ~=O.8 for x=2/15,4/5 

and 7/15 and it is much larger for x=4/3 and 2/3. We will be able to explain this 

difference. We will also be able to provide predictions for ratios of several c1's. 

In order to do so we first return to the two point function (see Eqs. (2.5) and 

(2.8)).  

(A,7) c I 

2 
(I/15,1/15) 15 0.00657(I) 

4 
(2/5,2/5) ~ 0.2364(I) 

7 
(2/5,1/15) 15 -0.03947(5) 

4 
(2/3,2/3) ~ -1.003(5) 

(0,2/3) 2 -0.2681(1) 

+0.795(10) 

+0.7998(3) 

+0.82(2) 

+1.6961(2) 

+2.10(6) 

Table 7 Values of c I and e defined by Eq. (6.1) 

Let us assume that we consider only spinless operators and we are in the case 

of periodic boundary conditions and let I1~with energy E I be the first excited state 

next to the ground-state [O> (energy E(P)). We also assume that the states IO> and 

II> have momentum zero. Taking the large (z2-T1) limit in Eqs. (2.5) and (2.8) we get: 

We now consider the effect of the conformal transformation (2.4) on the three-point 

function (2.2). Using Eq. (2.3) we obtain: 
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I 4 - ~'~ h ~  I w~ - -~ ' - '~"~ (6.3a) 

where 0 

(6.3b) 

In the limit r2-Tl -~°, T3-T2 -~, the three-point function has the expression: 

_ ~,r ~ C~ -'~ - ~ ~ c'el-~3 

(6.4) 

Using the spectral decomposition and taking A3=AI=A, we find in the same limit (using 

Eq. (6.2)): 

- CE~ - a "~e) ) rr3 - 'c . ,b  

(6.5) 

Comparing Eqs. (6.4) and (6.5), we find 

- E 
2g" 

and 

4~  I ~Ai.,~_Z. (6.6) 

In order to compute the correction term in Eq. (6.1) we assume that the Hamil- 

tonian of the perturbed systems is: 
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(6.7) 

where H is the conformal invariant Hamiltonian, g is a small coupling constant and 

~2,A2 SS a spinless primary field with scaling dimensions x2=2A 2. Applying stan- 

dard perburbation theory and Eq. (6.6) we find: 

(6.8) 

This expression generalizes obviously in the case where A#~ (see Eq. (6.1~ to 

~-x~ 

(6.9) 

We are now close to give an interpretation of the results shown in Table 7. 

The levels 2/5, 4/5 and 7/5 have 

= 2 - x 2 ~0.8 

This implies: 

(6.1 O) 

A 2 = 7/5 (6.11) 

In Table 8 we show which expansion coefficients c^ . A might be different of zer 6) 
al,a2, . 

and we notice that c2/3,2/3,7/5 = O which explains why there are no N -O'8 corrections 

for the x = 2/3 and 4/3 levels. 

From the knowledge of some known four-point functions 9) we have j9) determined the 

following values for the square of the expansion coefficients: 

"2. 

(6.12) 
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(o) 

(3) 

i(715) 

:215) 

2•3) 

;1/15) 

(0) (3) 

(0) (3) 

x (0) 

X X 

x x 

x X 

X x 

(7•5) (2•5) (2•3) (II15) 

(7•5) 

(215) 

(o)$(715) 

x 

x 

(215) 

(715) 

(2•5) 

(0)0(715) 

X 

(2•3) 

(2•3) 

(illS) 

(ill5) 

(0)@(3)@(2/3) 

(1/15) 
(2130(1115) 
(213@(1115) 
(2/3)@ (1/15) 

(7•5)@(2•5)@ 

(1/15) 

(3)@(7•5)@(2/5) 

@(2/3)@(I/15) 

Table 8 Possible nonzero expansion coefficients cAI,A2, A for various values 

of A 1 and A 2 (C~l,A2, A = CA2,Al,g). 

From Eq. (6.9) and (6.12) we derive 

C.~ ('x: _ (6.13) 

From Table 7 we find 

7 -  

7 
.> ] 

= I Oo~ (6.14) 

in excellent agreement with Eq. (6.13). 
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UNITARIZABLE HIGN~ST WEIGHT REPRESENTATIONS 

OF THE VIRASORO, NEVEU-SCh~ARZ AND RAMONDALGEBRAS 

Victor G. Kac 
IHES and MIT 

Minoru Wakimoto 
Hiroshima University 

§O. The Virasoro algebra Vir is the universal central extension of the complexified 

Lie algebra of vector fields on the circle with finite Fourier series. Its (irreduci- 

ble) highest weight representations Oz,h are parametrized by two numbers, the central 

charge z , and the minimal eigenvalue h of the energy operator % . These repre- 
O 

sentations play a fundamental rSle in statistical mechanics [1,5,6] and string theory 

[16]. 

The study of representations Oz, h was started by the first author [8], [9] 

with the computation of the determinant of the contravariant Hermitian form lifted 

to the corresponding "Verma module", on each eigenspace of % . This led to a cri- 
o 

terion of inclusions of Verma modules and the computation of the characters tr q o 

in some cases, in particular, for the critical value z = I [9]. Feigin and Fuchs 

[3] succeeded in proving the fundamental fact (conjectured in [I0]) that Verma modules 

over Vir are multiplicity-free, which led them, in particular, to the computation 

of the characters of all representations Oz, h o 

Using the determinantal formula, it is not difficult to show that °z,h is 

unitarizable (i.e. the contravariant Hermitian form is positive definite) for z > I 

and h > 0 [i0]. It is obvious that V(z,h) is not unitarizable if z < 0 or h < O. 

The case 0 < z < i was analysed, using the determinantal formula, by Friedan-Qiu- 

Shenker [5]. They found the remarkable fact that the only possible places of unitari- 

ty in this region are (Zm, ~r,s" (m)) , where 

= i - 6 h(m) [(m+3)r-(m+2)s]2-1 
(0.I) z m ~ ; r,s .... 4(m+2)(m÷3) 

Here m,r,s E~+ = ~,i,2,... } and I < s < r < m+l , (Actually, the series (0,i) was 

discovered by Belavin,Polyakov-Zamolodchikov Ill.) 

On the other hand, according to the Goddard-Kent-Olive (GKO) construction [7], 

Vir acts on the tensor product of two unitarizable highest weight representations of 

an affine (Kac-Moody) Lie algebra ~' commuting with ~' • This construction was 

applied in [7] to the tensor product of the basic representation with a highest 

weight representation of level m of s~ to show that all the z m indeed occur 

as central charge s of unitarizable representations of Vir. 
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In the present paper we show that the "discrete series" representations a 
z,h 

of Vir described by (O.I) appear with multiplicity one in the space of highest weight 

vectors of the tensor product of the basic representation and the sum of all unitari- 

zable highest weight representations of s~ , and hence are unitarizable. This is 

derived by a simple calculation with the Weyl-Kac character formula for s~ (see 

e.g. [Ii, Chapter 12]) and the Feigin-Fuchs character formula for Vir [3]. 

A similar result for the Neveu-Schwarz and Ramond superalgebras is obtained by 

the same argument to the super-symmetric extensions of s~ and their mini- applying 

mal representations (in place of the basic representation) constructed in [~3]. (The 

list analogous to (0.I) was found in [6], and it was shown in [13] that all corres- 

ponding, central charges indeed occur). 

All the discrete series unitarizable representations az, h are degenerate (i.e. 

correspond to the zeros of the determinant). The only other degenerate unitarizable 

representations (apart from the "non-interesting" case z > l, h = O) are Ol,m2/4 , 

where m • ~+, and all of them appear with multiplicity one on the space of highest 

weight vectors for s~ in the sum of (two) fundamental representations of s~½ [9]. 

Me show that a aimilar result holds in the super case as well. 

Finally, the above construction of the discrete series representations, allowed 

us to give a very simple proof of all determinantal formulas (cf. [2], [6], [9],[17]). 

Geometrically, the main result of the paper concerning Vir can be stated as 

follows. Let G be the "minimaX'group associated to s~ and let U+ and U_ be 

the "opposite maximal unipotent" subgroups of G [19]. Let V be the space of the 

basic representation of G . Then Vir acts on the space of regular U+-equivariant 

maps Map U (U_~G,V) , and all its unitarizable representations Oz, h with z < i 

appear wit~ multiplicity i. 

The first author acknowledges the support of IHES and the NSF grant DMS-8508953. 

After tNis work was completed, we received two preprints, "Unitary representa- 

tions of the VirasorO algebra" by A. Tsuchiya and Y. Kanie, and "Unitary representa- 

tions of the Virasoro and super Virasoro algebras" by P. Goddard, A. Kent and 

D. Olive, which overlap considerably with the present paper. 

We added seve ra l  Appendices to  the paper.  Appendix 1 p rov ides  a s imple s e l f -  

con ta ined p roo f  o f  the de te rm inan ta l  formulas fo r  the Neveu-Schwarz and Ramond 

supera!gebras V i r  . Appendix 2 con ta ins  m u l t i p l i c a t i v e  formulas f o r  charac te rs  o f  
E 

V i r  and Virc~ we hope t h a t  these formulas w i l l  p rov ide  a c lue to  more e x p l i c i t  

c o n s t r u c t i o n s  o f  the  d i s c r e t e  s e r i e s  r e p r e s e n t a t i o n s  o f  V i r  and V i r  ( c f .  Remark 

8 .2 ) .  F i n a l l y ,  i n  Appendix 3 we uncover a myster ious connect ion  between " e x c e p t i o n a l "  
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Lie algebras E8,E7, A 2 and E6, and the representations of Vir corresponding to 

the following two dimensional models : Ising, tricritical Ising, 3-state Potts and 

trieritical 3-state Ports respectively (see Remark 8.3). 

The first author acknowledges the hospitality of TIFR. 

§i. Here we recall some necessary facts about affine Kac-Moody algebras in the sim- 

plest case of s/~ 2 . 

Let g = s%2(C) be the Lie algebra of complex traceless 2 × 2-matrices, and 

let 

O i 1 O) , O O 
e = (0 0 ) ' a = (0 -i f = (i 0 ) 

be its standard basis. 

Let ~[t,t -I] be the algebra of Laurent polynomials over ~ in an indeterminate 

t . We regard the lo0p algebra ~ = sZ2(~[t,t-I ]) as an (infinite-dimensional)com- 

plex Lie algebra. It has a central extension ~' = ~ ~ ~c by a 1-dimensional center 

~c with the bracket 

(I.i) [x,y] = xy-yx+(Rest= ° tr 

for x,y E ~ . One includes 2' 

bra ~ = ~' @ ~d , where 

dx ~-6y)e 

as a subalgebra of codimension 1 in a larger alge- 

aN 
(1.2) [d,x] = t ~ for x E ~ ; [d,c] = 0 . 

The Lie algebra ~ (and often its subalgebra ~') with bracket defined by (I.i) 

and (1.2) is called an affine (Kac-Hood~)Lie algebra associated to g . This is 

the simplest example of an infinite-dimensional Kac-Moody algebra (ef. [II, Chapter 

7]). Putting x(k) = tkx for x C g and k C ~ , we have an equivalent form of 

(I.I) and (1.2) : 

(1.3) [x(k),y(n)] = (xy-yx)(k+n)+k~k,_n(tr xy)c;[d,x(k)] = kx(k);[c,~] = O . 

The (commutative 3-dimensional) subalgebra ~ = ~a+~c+~d of 

the Cartan subalgebra. Introduce the "upper triangular" subalgebra 

Define a symmetric bilinear form (.I-) on h by : 

is called 

= ~e+ E tk~ . 
k>o 

( 1 . 4 )  ( a l ~ )  = 2 ; ( c l d )  = 1;  ( a l e )  = ( a i d )  = ( d i d )  = ( t i c )  = 0 . 
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(It extends to a non-degenerate invariant symmetric bilinear form on ~ by 

(x(k) iy(n)) = ~. tr xy , (x(k) Ic) = (x(k) Id) = O) . Introduce the following subsets 
K ,-n I o 

of ~ : P: {rod+ ~ n~Im,n 6~+, n!m} ; P+ = P++IRc . 

Given ~ ~ P+ , t h e r e  e x i s t s  a Unique (up to  e q u i v a l e n c e )  i r r e d u c i b l e  r e p r e s e n -  

t a t i o n  W% of  ~ on a complex v e c t o r  space L(%) which admits  a non-ze ro  v e c t o r  

v% 6 L(%) such t h a t  

(1 .5)  ~%(~)v% = 0 ; wk(~)v% = (~lp)v% f o r  a l l  p E 

This is called the integrable represer~tation with highest weight 1 (cf. [II, chap- 

ter i0]), v I being called the highest weight vector. The number m = (llc) is 

called the level of L(I) ; we have : zl(c) = ml . Recall that m 62Z+ , furthermore, 

m = 0 if and only if dim L(I) = I . Note that ~iewed as a representation o~ ~' , 

~l remains irreducible and is independent of the c-component of l 

All representations ~l are unitarizable in the sense that there exists a posi- 

tive definite Hermitian form <.I.> on L(I) such that (ef. [117 Theorem ll.Tb]) : 

(1.6) <zl(x(k))ulv> = <Ul~l(t~(-k))v> for all u,v 6 L(I) . 

(Actually, property (1.6) together with <vllvl> = i determines the Hermitian fom 

uniquely; a Hermitian form satisfying (1.6) exists for any I 6 h , but is positive 

definite only for I 6 P+) . 

With respect to ~l(d) we have the eigenspace decomposition : 

(1.7) L(l) = @~ e ((lld)-k) , where dim L ((lld)-k) < 
k6 + 

Consider the domain D = {za+Td+uc 6 ~ IT,u,z 6 ~ and Im • > O} 

character of the representation ~ by : 

• Define the 

= E tr exp 2wi(~%(½ z~-Td+uc~l eh~(T,Z,u) 
((% Id)-k) k6~+ L 

This is an absolutely convergent series defining a holomorphic function on D . It 

can be written in terms of elliptic theta functions 0 as follows [Ii, Chapter 
n~m 

12]. For a positive integer m and an integer n put 

@n,m(~,z,u) = e 2wimu E n qmk2 e2~imkz 

k6 ~+ 2--m 

I Here and further on, q = e 2~iT . For X 6 P+ , % = md+ ~ n~+re , r6 ~ , put 

(n+ 1) 2 I 
---+r. 

s% = 4(m$2) 8 
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Then we have the following special case of the Weyl-Kae character formula : 

(1.8) ch I = q-St(On+l,m+2-@_n_l,m+2) / (~1,2-0_i ,2)  . 

In the following three simplest cases there are simpler formulas 

(cf. [12, p.218]) : 

(l.9a) ch d = 00,I/~0(q) , where 

oo 

(l.9b) ~0(q) = ~ (l-q k) ; 
k=l 

(I. 10a) Ch2d + ql/2 Ch2d+~ = (@0,2+@2,2)/~01/2(q) , where 

(l.lOb) [Pl/2(q) = ~0(ql/2)~0(q2)/~0(q) ; 

(l.lla) Ch2d+i/2 ~ = q-i/8(@l,2+@_l,2)/%00(q) , where 

(l.llb) ~00(q) = ~(q)2/~0(q2) . 

§2. We now recall a special case of the Goddard-Kent-Olive construction [7]. 
i 

~[ui% and {u i} be dual bases of g, i.e. tr u.ul = 6..(i,Jl3 = 1,2,3). Pick Let 

%,~ 6 p+ of levels m and m ~ and define the following operators L k on the 

space L(~) ~L(~') (k ~2Z): 

Lk --I ~ ~ ~(ui(-j))~%,(u~( j + k)) (2.1) 
rn+m ' +2 j6~ i 

i 12(m+2)'" - 2(m+ml' I+2) 
~ ~l ('ui (-j)ui(j + k) :)~ i + 

jex i 

+ [2 (m'+2) 2 (m+m' +2) j~Z i 

Let ~ be the Casimir element of ~ (cf. 

will need only the following property of 

on which ~ acts and v 6 V ~ , then 

[II~ Chapter 2 and Exercise 7.16]). We 

. If (w,V) is a representation of 

i (2.2) ~(~)v = ~(2(c+2)d+ ~ ~2+~)v . 

Here and further on V ~ stands for {v 6 Vl~(a)v = 0 for all a 6 5} . 

The proof of the following formulas is straightforward (cf. [12, §2.5] or 

C18]) : 
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(2.3a) 

(2.3b) 

(2.4) 

k3-k 
[Lk'Ln] = (k-n)Lk+n+36k,-n 12 p(m,m') , wher~ 

m m' m+m' 
p(m,m') = ~ + m---~+2 m+m'+2 

1 (~J~+~) (~'I~'+~) ~ ) 
Lo = ~ (---~ + m'+2 - m+m'+2 

(2.5) [L ,~'] = 0 
k 

i.e. the L k are intertwining operators for the representation ~% @ ~%, of ~' 

Remark. Formulas (2.3-5) hold for all non-twisted affine algebras ~ with the follow- 

ing changes : m+2 , m'+2 and m+m'+2 are replaced by m+g , m'+g and m+m'+g , 

where g is the dual Coxeter number [ii, Chapter 6] , the coefficient 3 is replaced 

by dim g, and ~ is replaced by 2p . In the twisted case, formulas are somewhat 

more compl£cated (see Appendix 3). 

§3. Now we turn to the Virasoro algebra Vir. Recall that this is a complex Lie alge- 

bra with a basis {~;%j,j E ~} with commutation relations 

• . i (i3-i)~i,_j~;[~,% j] = O (3.I) [%i,£j] = (1-j)%i+j+ ~ 

Given two numbers z and h , there exists a unique irreducible representation 

Oz,h of Vir on a complex vector space V(z,h) which admits a non-zero vector 

such that V = VZ, h 

(3.2) Oz,h(£j)v = 0 for j > 0 ; Oz,h(%o)V = hv ; Oz,h(~) = zI . 

Note an analogy of this definition with that of highest weight representation of ~ . 

Similarly, provided that z and h are real numbers, V(z,h) carries a unique 

Hermitian form <.I.> such that <Vz,hJVz,h > = 1 and 

(3.3) <Oz,h(~j)ulv> = <UlOz,h(%_j)v> for all u,v e V(z,h) . 

The representation Oz, h is called unitarizable if this Hermitian form is positive 

definite. 

With respect to Oz,h(£o) we have the eigenspace decomposition 

(3.4) V(z,h) = ~ V(z,h) k , where dim V(z,h) k < ~ 
kEh+~+ 
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We define the character of the representation Oz, h by 

((3.5) ch = E (dim V(z,h)k)q k (= tr q o) . 
z,h kCh+~ 

Note that putting (cf. §2) : 

(3.6) ~(%j) = Lj , ~(~) = 3p(m,m')l, 

we obtain a unitarizable representation of the Virasoro algebra on the space 

L(%') ~ L(%) . It decomposes into a direct sum of unitarizable highest weight repre- 

sentations of Vir with "central charge" 3p(m,m') . Note that the central charge z m 

(defined by (0.i)) occurs if one takes %' = d and % of level m [7]. In the 

next section we show that all h (m) from (0.i) occur in this construction as well 
r~s 

and, moreover, we "locate" the corresponding representations of Vir . 

i I i pO , and put J% = {k E ~ I- ~ (m+l-n) < k ~ n} . Define §4. Fix % = md+ ~ na f + 

the following subspace for k E J% : 

U%, k = {v C (L(d) ~ L(%))~i(~d ® ~%)(e)v = (n-2k)v} 

Note that this is the subspace spanned by highest weight vectors of ~' in 

L(d) @ L(%) with weight d+%'ke . In particular, (L(d) @ L(%)) ~ decomposes into 

a direct sum of the U%, k . Furthermore, U%, k is invariant with respect to d and 

hence decomposes into a direct sum of its elgenspaces U (j) (with eigenvalue 
%,k 

j E 2~) . Note that every non-zero vector of n (j) is a highest weight vector for 
-k,k 

with highest weight d+%-ka+jc . In other words, dim U (j) is the multiplicity of 
%,k 

occurence of L(d+%-k~+jc) in L(d) ® L(%) . Here and further on we use the fact 

that all representations in question are completely reducible with respect to ~ and 

Vir (since they are unitarizable)° 

Putting m%,k(q) = E(dim u(J))q -j j %,k , we have : 

(4.1) ch d ch% = E m%, k Chd+%_k~ 
k6fJ% 

To compute the m%, k we multiply formulas (1.9) and (1.8) and use the following 

multiplication formula of theta functions [12, p.188] : 

(4.2) = d! m'm''n'n') @ , , where 
@n'm@n''m' j~ ~ mod(m+m') ~ 3 n+n +2mj,m+m ' 

d!m'm''n'n')(q) = @ , , . , (T,O,O) 
J m n-mn +2jmm ,rmn'(m+m') " 
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We obtain : 

, ~ - l ,=(m,n)  v(m,n)~ 
(4.3) mX,k = ~q) ~k -~n+l-k j ' 

where 

(4.3a) f(m,n) q(m+2)(m+3)j2+((n+l)+2k(m+2))j+k 2 
-k = Z jE~ 

(Formula (4.3) may be also derived from [4]). 

On the other hand, it follows from (2.5) that the subspace U%, k is invariant 

with respect to Vir and thus carries a unitary representation of Vir . Putting 

m' = I in (3.6) and (2.3) we find (as GKO did) that the central charge of this 

representation is z m (see (0.i)). Furthermore~ it is clear from (4.3) that the mini- 

mal eigenvalue of -d on UX, k is k 2 . But we have by (2.4) and (2.2) : 

n(n+2) (n-2k)(n-2k+2) 
(4.4) L ° = -d + 4--Cm$-~- 4(m+3) on ux, k . 

Defining numbers r X and s%, k by r A = n+l , s%, k = n+l-2k if k ~O and 

rx = m-n+l , sx, k = m-n+2+2k if k < O , we arrive at the following 

Lermna 4.1. The minimal eigenvalue of L ° on UX, k is h (m) 
r%,s%, k 

Thus, U%, k contains the unitary representation of Vir, which we denote by o 

ior short, with highest weight (z h (m) ~ . But actually it coincides with this 
'ur%'s%, k~ m%,k(q ) representation. Indeed tr qLo o£ %,k is equal to (given by (4.3)) 

multiplied by a power of q equal to the constant in the right-hand side of (4.4). 

Comparing this with the Feigin-Fuchs character formula for o [3] (see [15] for an 

exposition of their results) we find that the character of ~ coincides with tr qLo 

on U~, k ! 

We summarize the results obtained in the following theorem. 

Theorem 4.1. (a) All highest weight representations of the Virasoro algebra with 
. (m)\ 

highest weights (Zm'hr,s) given by (O.i) are unitary. Moreover, all these represen- 

tations appear with multiplicity i in ~ (L(d) ~D L(%)) ~ . 
~pO 

+ 

(b) With respect to the direct sum of 2' and Vir , we have the following decomposi- 

tion ~ for X ~ po of level m : 
+ 

. (m) 
L(d) ~L(%) = ~ (L(d+X-k~) ® V(Zm,hrX,s%,k )) 

kCJ X 

Remark 4.1. The characters ch z h(m) become holomorphic modular forms in T of 
m ~ r~s 

weight 0 on the upper half-plane when multiplied by a suitable power of q . Since 
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they coincide with mx, k multiplied by a power of q , it follows from [12, p.243] 

that the linear span of these "corrected" characters for fixed m and all h f~) 
r,s 

from(O.l) form an (m+l)(m+2)/2-dimensional space invariant with respect to the 

usual action of SL2(~) (f(~) ~f((a~+b)/(cT+d))) . 

Remark 4.2. Theorem 4.1(a) gives uS what is called a model (i.e. a space where each 

representation of a given family appears once) for all unitary representations of 

the Virasoro algebra with z < i . A model for all degenerate representations with 

z = i was constructed in [9]. Namely, the space (L(d) ~ L(d+ I e ~)) contains 
m 2 

exactly once all representations V(I, %--) , m E 7z+ , so that with respect to the 

direct sum of g and Vir we have [9] : 

2 
I m ) , 

L(H) ~ L(d+ ~ ~) = ~ (rm+ I @ V(I, ~-) 
m ~+ 

where T m denotes the m-dimensional irreducible representation of g = s£2(~) . 

§5. We now turn to the supersymmetric extensions of the above results. The terminolo- 

gy and conventions of Lie superalgebra theory adopted here are that of [14, §I.i]. 

i = s£2(C[t,t-l,@]) where Fix a = ~ or O . Take the superloop algebra ~e 

@2 = 0 , and put x(k+g)' = tk@x for x E g and k E~ . Define the affine super- 

algebra [13] ~ = ~ • ~c @ Cd with the (super)bracket defined by (1.3) and 

(5.1a) [x(k)',y(n)']+ = ~k,_n(tr xy)c for k,n C ~+~ ; 

(5.1b) [x(k),y(n)'] = (xy-yx)(k+n)' for k E~ , n E s+~ ; 

(5.1c) [d,x(k)'] = kx(k)' for k E ~+~ ; [c,~g] = 0 . 

The Lie superalgebra ~c contains ~ as the even part and 

subalgebra of ~ . Also, gs = ~c+~c is a subalgebra of 

~+ Z @tkg and ~ = ~+~@e+ E @tkg . For 
k>o o k>o 

highest weight representation (~%;~,Le(%)) 

is replaced by ~ . Unitarizability of g 
defined in the same way as f or ~% [13]. 

The representation of ~s with highest weight A s = 2d+(½ -E)~ 

minimal [13]. With respect to ~ it decomposes as follows : 

i 
(5.2) LI/2(%1/2) = L(2d) @ L(2d+~- ~ c) ; Lo(X o) = L(%o)~L(% o) . 

is called the Cartan 

ge . Put ~i/2 = 

C ~ define the ~-graded) irreducible 

of ~ by the property (1.5) where 

~%;s and its character ch%;e are 

is called 

Denote the right-hand sides of (5.2) by F 
E 

one can construct its "supersymmetrization" 

• Given a representation (~iV) of 2, 

(~e,Ve) [13], which with respect to 
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is just F @ V . It is shown in [13] that all unitarizable highest weight represen- 

tations of ~ are of the form ~+%~;~ , % E P+ , and that ~%+~ ;~ = #~ . It 

follows that with respect to ~ we have : 

(5.3) Ls(% C) ® L (%+% s) ~(F s Q L(%)) s , %EP+ . 

We denote by Vir the complex Lie superalgebra with a basis 

and gj , j E ~+ ~ } with commutation relations (3.1) and 

(5.4a) [gm,£n] : (m-~)gm+n ; [gm,~] : 0 ; 

{~;£j, j E~ , 

I ~) ~m,-n ~ (5.4b) [gm, gn] + = 2%m+n + ~ (m 2- 

i 
(For ~ = ~ or 0 , Vir is called the Neveu-Schwarz and Ramond superalgebras, 

respectively). The highest weight representation (Oz,h;s~V (z,h)) of Virs is 

defined by (3.2) and Oz,h; (gj)Vz, h = O for j > 0 . Its unitarizability and 

character Chz,h; e are defined in the same way as for Oz,h in §3. 

The analysis of the unitarizability of the representations o is similar 
z,h;~ 

to that of Oz, h [5], [6], [9], [IO], [13]. It turned out that these representations 
3 

are unitarizable for z ~ and h ~ O [6], [IO]. (Note that 

Chz,h; e = (2-2e)qh/~g(q) , the character of the Verma module, if z > ~ ~ and h ~ O). 

Furthermore, the only other possible places of unitarity are (z ,h (m) s) where 
m;s r,s; ' 

[5], [6] : 

3 8 ) h(m) ((m+4)r-~n+2)s)2-4 I i 
(5.5) Zm; E = ~ (i- (m+2)(m+4) ; r,s;s = 8(m+2)(m+4) + 8 (~ -~) 

Here m,r,s E~+ , I < s < r+l-2s~ m+2-2e and r-s E 2e+i+2~ , r ~ 0. 

Let X,X' E P+ be of level m and m' . In the same way as in §2, one can 

construct intertwining operators L! e) and G! ~) on the space 
J J 

L (%+X) ~ Le(X'+X ) (see [13]) which satisfy commutation relations (5.4) with 

central charge 

m 
(5.6) 3( + m'+2 ) + ~2 

and with the following expression for L (e) on the kernel of 
o 

1 2 
I (~IX+~) (~' ~'+~) ~ ~ +~ 3 i -E) . 

(5.7) 7 ( - 7  + m'+2 m+m'+4 )-d÷ ~ (~ 

: 

Now take %' = O (so that m' = O) and 

out in [13]) , we get all the central charges 

i pO Then (as pointed = md+ ~ n~ ~ + . 

z . We proceed as for the Virasoro 
m;s 
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algebra, to show that all the h's from (5.5) occur as well. Put 

Jl;s {k C ~I- m-n+l n+l 
= 2 -s < k <--i---g} and, for k E J%;e ' put 

U%,k; s = {v C (Fe OL(I))~I(~ ~ @ ~%)(~)v = (n-2k+l-2E)v} 

^ v in Then the subspace spanned by all highest weight vectors of ge 

+l-k~ coincides with v. ~ U~ . , where v Ls(~E) ® Le(I+~ s) of weight 21 e A e A,K;e ^ %s 

is the highest weight vector os Fs (see (5.3)), and (Le(% s) @ Le(%+%e))ne decom- 

poses into a direct sum of these subspaces with k C Jx;e . Each subspace N%,k; s 

decomposes with respect to d into a direct sum of eigenspaces U (j) with eigen- 
%,k;e 

= E (dim U (j) value j C s+~ . Putting m%,k; s j ~k; ~q-J ' we have 

(5.8) ch%s;eCh%+%s;e = E m%,k;sCh%+2% -k~;e 
kCJ%; e s 

To compute the m%,k;e , we multiply formulas (i. I0) 

use (4.2). 

(resp. [.Ii)) and (1.8) and 

We obtain : 

' _ f (re,n) ) , (5.9) m%,k; e = (2-2e)~s(q)-i (f~m~n) n+l-k,s 

where 

1 1 121 (m+2)(m+4)j2+((n+l)+(k+e - ~)(m+2))j+ 7 k -(~ -e)k 
(5.9a) f(m,n) = E q 

k,s j6 

Using (5.7) and (5.9), we find that the lowest eigenvalue of L (s) on 
o U~,k;e 

[(n+l)+(k+s-i/2)(m+2)]2-1 I i -e) 
(5.10) 2(m+2)(m+4) " + 8 (~ • 

is 

r~ 

Define numbers rx and s%, k by r% = n+l , s%, k = n+2-2e-2k if k ~ 0 , and 

= m-n+l , s%, k = m-n+2k+2+2s if k < 0 . We arrive at the following theorem. 

Theorem 5.1. (a) All highest weight representations of the Neveu-Schwarz and Ramond 

superalgebras Vir with highest weights (5.5) are unitary. All these representa- 
e 

tions appear in 

^ 

~CP~ 

with multiplicity one, except for (z ,h(~ +i ) with m # 2r which appears 
m;c r zg,r i;g 

twice. 

(b) Given X E P~ of level m , we have the following decomposition with respect to 

^' and Vir : the direct sum of ge E 
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,(m) ) 
L (X C) ® L (X+X) = ~ L (~+2X -k~) ® V(z , n  o . 

kEJx,'E ~ ~ m;~ r%,sX,k,~ 

Remark 5.1. The proof of Theorem 5.1 (b) and the part of 5.1(a) concerning multipli- 

cities require showing that, up to multiplication by a suitable power of q , we 

have the following equality : 

(5.11) Chz ,h (m) = mX,k; e (given by (5.9)). 

m;E rl,sX,k;S 

This can be done by applying the Feigin-Fuchs analysis [3] to Vir . Let us say 

that a number from the set {h (m)rl,sl,k;elk E Jl;~ } is good if adding to it a positive 

integer never gives a number from this set. It follows from (5.5) and (5.9) that for 

(Zm;s,h) with good h , (5.11) holds automatically. This observation proves (5.11) 

in most of the cases (but not in all of them). Similar remark holds, of course, for 

Vir. 

Remark 5.2. Taking integral and half-integral powers of q in mX,k;i/2 gives the 

c h a r a c t e r s  o f  t h e  e v e n  and odd p a r t  for  t h e  Neveu -Schwarz  s u p e r a l g e b r a .  For  t h e  Raraond 

superalgebra these two characters are both equal to the half of mX,k; ° , since go 

i s  i n v e r t i b l e  and  h e n c e  p e r m u t e s  t h e  e v e n  and odd p a r t s  o f  a l l  r e p r e s e n t a t i o n s  i n  
1 N 

question (since g~ = £o- ~-$c and the spectrum of %o on all unitarizable represen- 
1 

t a t i o n s  f r o m  ( 5 . 5 )  w i t h  e = 0 .  i s  g r e a t e r  t h a n  - ~  ) .  

Remark 5.3. Vir acts on L (X) , commuting with g(~s) , hence on LE(% )e , 

3 Le(ls)e with central charge z = ~ [13]. It is not difficult to show that is 

a model for degenerate highest weight representations of Vir with z = 
s 2 " 

More precizely, with respect to the direct sum of ~ and Vir e we have the follow- 

ing decomposition : 

3 k2+(l-2e)k + 3 I 
LE(X ) = Z T2k+2-2e~VE(7 ' 2 ~ (~ -E)) . 

kE + 

Remark 5.4. Using the above construction, we can give a very simple proof of the 

formulas for detn(z,h) of the determinant of the contravariant form on the subspace 

of elements of degree n of the Verma module with highest weight (z,h) (cf. [9], 

[2], [3], [6], [17],...). Consider, for example, the case of Vir (the argument for 

Vir is exactly the same). It follows from (4.3) and the fact that Vir acts on 
c 

UX, k , that 

h (m) ~(q)-l(l_qrS_q(m+2-r) (m+3-s) 
Chzm,h$? ~ J q r,s + .--) . 

Hence the kernel of the contravariant form on the Verma module with highest weight 
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. (m)~ 
(Zm,ar,sJ contains non-zero vectors of degree rs and (m+2-r)(m+3-s) . Hence, 

h = h (m) are roots of detrs(Zm,h ) for all r,s > 0 8o, as a polynomial in two r,s 
variables, detrs(Z,h ) vanishes at infinitely{~/_~many points of the curve ~r,s(Z,h)= O, 

where #r,s is defined by ~r,s(Zm,h)= (h-h~)(h-h~?~) . Thus~ -.- -.- detrs(Z,h ) is 

divisible by ~r,s(Z,h) if r ~ s or by its square root if r = s . An easy induc- 

tion on n , as in [2, §4.2] , completes the proof of the formula [8], [9]: 

n 
(detn(z,h)) 2 = const H H (z,h) p(n-a) 

a=l jla ~j,a/j 

where const # 0 depends only on the choice of basis. The argument for Vir is 

given in Appendix i. 

Appendix 1. A proof of the determinantal formulas. 

We give here, for the convenience of the reader, a selfcontained proof of 

the determinantal formulas for Vir . 

Given numbers z and h, there exists a unique (E2-graded) module M (z,h) 
E 

over Vire, called Verma module, which admits a non-zero vector Vz,h, such that 

~0Vz,h = hVz,h, EVz, h = ZVz, h and the vectors 

v(i I, ,i~;Jl,.. ,JB) = ..£_ilvz, h 
. . . .  g_jB-.-g_jl~_i • 

with 0 <i 1_< ... --< i~ and 0_< J1 <"'< JB form a basis of M~(z,h) (in parti- 

cular, £jZv, h = 0 and gjVz, h = 0 for j > 0). The space M~(z,h) carries a unique 

Hermitian form <'I; > such that the no~ of Vz, h is 1 and £*j = £_j, g] = g_j, 

called the cantravariant Hermitian form. With respect to 10' M (z,h) decomposes 

into an orthogonal direct sum of eigenspaces M (z,h) n with eigenvalues h + n, 

where n ~ (1-~)E+. We say that vectors from M(z,h) n have degree n. Let 

M (z,h)~ and Mc(z,h) ~ denote the even (resp. odd) part of M (z,h) n. We have : 

l+E+) and M0(z,h) n M½(z,h)n=M½(z,h) ~ (resp.= M½(z,h)~) if n ~ E+ (resp. n ~ 

is an arthogonal direct sum of subspaces M0(z,h) ~ and M0(z,h) ~. Let p (n) be the" 

coefficient of qn in the power series expansion of ~ (q)-l. Note that 
+ 

(6.1) dim M½(z,h) n = P½(n); dim M0(z,h) ~ = P0(n). 
+ 

We put p~(n) = PO(n) $ ~n,0' and 

~r (z ~'h) = (h-h~;e)Ik s(m) ) ,s;e m; kn--'Is,r;~ " 

i) We assume that the even and odd subspaces are orthogonal (this is not satis- 

fied automatically if e = 0). 
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Note that @r,s;~(z,h) is a polynomial (of degree 2) in h and z. Given 
+ 

n ~ (2-2~)~+, let det~n(z,h) ~='' denotes the determinant of the contravariant 

Hermitian form on M (z,h)~._ The aim of this appendix is to prove the following 

formula (cf. [9] and [6]) : 

(6.2) det~n + (z,h)~=const(h-lz)(1-2E)P~O(½n) ¢ (z,h) p~(½(n-ab)) 
a,b;~ 

a,b s A+ 
1 <ab< n 

a-b c 2e+i+2~ 

where const, is a non-zero constant, independent of z and h. 

As in Remark 5.4, it follows from (5.9) and the fact that Vir acts on 
S 

Ux,k;£, that 
h (m) 

ch z h(m) (q) ~ q r,s;~jr_~-irl~ -q-½rS-q½(m+2-r)(m+4-s)+..-). 
m;£' r,s;e 

Since L (z,h) is the quotient of M (z,h) by the kernel of the contravariant form, 

(Zm; h(m) ) c it follows that for M , . this kernel contains non-zero vectors of degree 
i ~ g r,s,g 
rs and ~(m+2-r)(m+2-s)" It follows that for all a and b as in (6.2), 

det½ab(Z,h) ~ is divisible by Ca,b;E(z,h) if a { b or by its square root if a=b. 

Furthermore, it is clear that goVz+h is in the kernel of <'I" > if 

h = ~zl (and e = 0); also go is invertible on Mo(z,h) if h > lz. It follows 
• + . . . .  

that for all a and b as in (6.2), det~b(Z,h) n ms divisible by ;o(z,h) and 

that deto(z,h) is divisible by h-lz.2~An induction on n, using Ca,b (6.i) and well- 

known elementary properties of Verma modules, proves that the left-hand side of (6.2) 

is divisible by its right-hand side. 
+ + 

We will show that, for a fixed z, the degree of Q~n; (h) = det~n(Z,h) , ~  

viewed as a polynomial in h, is exactly the half of the degree of the polynomial on 

the right of (6.2). Recall that the vectors v(il,...,i ;jl,...,jB) with 

il+...+i +jl+...+jB = n and B even (resp. odd) form a basis of M (z,h)~ _ (resp. 
+ 

M (z,h)n), so that Q~; (h) is the determinant of the matrix of the inner products 

of these vectors. It is clear that only the product of the diagonal entries of this 

matrix gives a non-zero contribution to the highest power of h, and that 

<v(il,...,i ;jl,...,JBlv(il,...,i ;jl,...,jB)> has degree ~+B in h. It is easy 

to deduce now that : 

1 1 
deg Qn;½(h) = ~ ! P½(n-~ms)+ ~ ~ (-i) m+l P½(n-~ms), 

s>O m 0 s>O m>O 
s even s odd 

+ 

= ~(P-~o(n) + ~ ~ (Po (n-ms) + - PO(n-ms)), dog Q~n;o(h) i + ( l)m+l 
s>O m>O 

where s and m are integers. This completes the proof of (6.2). 
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Appendix 2. Multiplieative formulas for characters. 

We present here formulas connecting the characters of discrete series repre- 

sentations of Vir and Vir with specialized characters of affine Kac-Moody 

algebras of type A i) and . In many cases this gives simple product decompo- 

sitions of characters of Vir and Vir . In what follows we use freely notation and 

results of the book [ll]. 

Let A be the generalized Caftan matrix of type A~ l) or A~ 2). Let g(A) 

be the associated Kac-Moody algebra. Let A be the set of positive roots and let 
• . ( i )  + 

aO,~l be simple roots (in the case A I ' ~0 = c-a and ~i = a)" Let AO,A 1 be 

fundamental weights (in the case A~ 1), A 0 = d and A 1 = d÷½a) and let 
0 0 

P+ = {k~o+klAiik i c 77+}. Given A = koAo+klA1 z P+, whieh is usually written as 

A = (ko,kl), we have the integrable representation L(A;A) of g(A) with highest 

weight A. 

Let W(A) be the Weyl group and let p = A 0 + A 1. Given X c p + pO +, put 

NZ A) = ~ sgn(w) e w'X-X . 
w ~ W(A) 

Then the Weyl-Kae character and denominator formulas read [ll, Chapter i0] : 

(7.1) e -A ch L(A;A) = N(A)/N (A) 
A+p p ; 

(7.2) N(A) = T [  (i-e-~) • 
P c~cA+ 

.(i) formula (7.1) is another form of formula (1.8); note (Note that in the case al ' 

that in our cases, mult ~ = 1 for all ~ c A+). 

Given a pair of positive integers t = (to,tl) , the algebra homomorphism 

-~0 -~i]] -(A), -~i~ ti 
F A) : ~[[e ,e ~ ~[[q]] defined by ~t te j = q (i = O,1) is called 

the specialization of type t. In what follows we shall often write 1 and 2 in 

place of A~ I) and A~ 2) respectively. 

Fix A = (M-1,N-1), where M and N are positive integers. Using that 

W(A) {(ro~rl)n , ( r o r l ) n ro ;  n c 77 }, one eas i ly  deduces the fo l lowing formulas : = 

I t l  (M+N)j2+( I t I N-tl(M+N)) j 
(7.3) q F(1)(N(1)~ = 

t A+p" 
j ~ 7 7  

(7.4) F (2) " (2)~ : ~ q 
t (I~A+o; j ~TZ 

I tl (M+N)j2+( I t I N+tl(M+N) ) J+tlN 
- ~ q 

j~TZ 

tll (M+ZN)j2~(mll tll N-tl (M+2N))j 

j c77  

½11tlI(M+ZN)j2+½(ZlIqlN+tI(M+ZN))J+tlN 
q 
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where I t l  : to+t ! and l lq = 2t0+t 1 

One knows the following general product decomposition [11, Chapter lO] : 

(A) t~(A)~ = F(A) (N(A)). 
(7.5) F(1,1)"~+p' (M,N) p 

Furthermore, there are the following special product decompositions[20] : 

F(1) ~w(1)~ _(2) . ,(2), 
= (~p J (7.6a) (l,2)'"A+p' t(M,2N) 

( i)  rw(1)~ = ~(2) rK(2)~ 
(7.6b) F(2,1)'"A+p' "(N,2M)'"p ' 

(7.60) F~1)(~(1) ~ ~(2) )~(2)~ 
.,(n,2n)J = - (nt0,2nt  I ~"p 

(7.6d) F~ 1)oK(l) I = F (2) (N(2)). 
'"(2n,n) j (ntl,2nt O) P 

We put 

In the case 

d~t;A)(q) 

t = ~ = (1,1), d~ ;A) (q)  

= F~A)(e - A (  oh L(A;A)). 

is  called the q-dimension of L(A;A); due to 
(7.5), it has a product decomposition. 

We turn now to the product decompositions of the characters of the Virasoro 

algebra. For the sake of simplicity, we put 

_h (m) 
(m) r,s 

= q ch ~ ~rm~(q)" Xr,s 
Zm,hr, s 

Comparing formula (4.3) (which gives the character of a discrete series representat- 

ion of Vir) with (7.3) and using (7.1) and (7.2), we arrive at the following 

beautiful formula. 

Proposition 7.1. Take 1 < s < r < m+l, and put A = (m+2-s,s-1) and t = (m+2-r,r) 

(or A = (m+l-r,r-l) and t = (m+3-s,s) respectively). Then 

• (m)-  : d ! t ; 1 )  (7.7) Xr,s (q) A (q) TT (l-qj)-i " 
jZ1 
j~O,~r mod(m+2) (or O, ±s mod(m+3) rasp.) 

(If 2r=m+2 (or 2s=m+3 rasp.), the product on the right should be interpreted in a 
usual way). 
Remark 7.1. Formula (7.7)shows thatt ~(Zm'hrTB) is a tensor product of the ( s 

(m+2-r,r)-graded space L(m+2-s,s-1;A~ 1)) and (l,1)-graded space L(m+l-r,r-l;A~ 1)) 

where 8+ is the "positive part" of the principal Heisenberg subalgebra of s~. 

This suggests that there may be some more explicit constructions of the discrete 

series representations of the Virasoro algebra. 
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Using formulas (7.6), we can obtain, in some cases, from (7.7) multipli- 

cative formulas. They are collected in Table I, where, for simplicity, we use the 

abbreviated product symbol 

TT(I-q uj~v) = TT (l-qUj+V)~T (l-qUj-V), 
j j~0 j~ l  

and similarly for "-" replaced by "+". If r and s do not satisfy the condit- 

ion 1 < s < r < m+l, it is assumed further on that they are brought to this form 

by transformation r' = k(m+2)~r, s' = k(m+3)+_s, with some k e ~ (which leave 

h (m) unchanged). 
r,s 

Table 1 

(2r-2)(~) = ~(qr(2r+l)) (i qr(2r+l)j+rs) 
Xr, s ~ ~(q) TT - - 

J 

(3r-Z)(~) = ~(qZr(3r+l)) (l_qr(3r+l)j±#s) 
Xr, s u ~(q) TT 

J 

× TT (l+q r(3r+l)j+-rs) 
j=odd 

(3r-2)(~) = ~(q2r(3r+l)) (i qr(3r+l)j+rs) 
XZr,s u ~(q) ~t - -- 

J 

x ~T (l+q r(3r+l) j+rs) 
j=even 

~(qS(2S-1)) (2s-1)j+rs) (2s-3)(q) = TT(l_qS _ Xr,s ~(q) j 

( 3s -3 ) (q )  = m(q z s ( 3 s - l ) )  ( 3 s - l ) j ± r s )  
Xr,s @(q) ~T(1-q s 

J 

x TT (l+q s(3s-1)j+-rs) 
j=odd 

(3s-3)(q) = @(q2S(3S-1)) ~T (1-qS(3S-1)j+rs)- 
Xr,Zs ~(q) j 

x ~T (l+qS(3S-1)j+rs) ' 
j=even 

Next, we put 

_h (m) 
~(m)+ :q r'S(ch (m)(q) ~ ch h(m) (q)) . r , s -  

Zm'hr,s Zm' m+2-r,s 

Then, in a similar way, we obtain the following table : 



362 

Table 2 

r ( 4 r + l )  
J ~(4r -2)+ ,  , 1 2 

- k q )  - ~ (q )  Tmlil ( l _ ( ¥ 1 ) J  q ) r~s 

r ( 4 r + l )  . 
x T-T(I_($1)j q 2 j+rs) 

J 
s(4s-l) . 

(4s-3)+,  , 1 ~(1_(~1) j q 2 J) 
r,s --kq) = ~(q) J 

s(4s-l) . 
x ] ~ ( l _ ( ; l )  j q 2 J~rs) 

J 

r(3r+l) r(3r+l) . rs 
~(3r -Z) - (q)  = ~(q 2 ) T J ± T  
r , s  m(q) ~ F ( l - q  ) 

J 

r(Sr+l) . rs 

x~T(l+ q 2' J ~ T )  
J 

@(6r-2)-(q) , r ( 6 r + l ) ,  . ( i  q r ( 6 r + l ) j + r s )  
= ~ q  J TT - - ~(q) r~s J 

x ~T ( l - q  r (6r+ l ) j+-2rs)  
j=odd 

s(3s-1) s(3s-l) . rs 
~(3s-3)-(q)  = ~(q 2 ) 4 J ± - 2 -  
r , s  w('q) TT ( I - q  ) 

J 

s(3s-1), rs 
z J ± T )  

X ~T ( l+  q 
J 

•(6s-3)-(q) r~s 
s(6s-l) ~ f 

(1 qS(6S-1)j+rs) = ~ q  ~ (q )  J T~ - 
J 

x T'[ ( l - q  s (6s-1) j±2rs )  
j=odd 

Note that formulas from Tables i and 2 cover all cases for small m. The 

case m = 1 is well-known; the case m = 2 was worked out in [15]. 

In a similar way, one finds product decompositions for the characters of 

Vir . Put 2) 
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_h (m) 
(m) c(q) = 1 r,s;s (q) 

Xr,s ; 2_--~ q eh h(m) . 
Zm;~' r,s;~ 

Then we have 

(m) (q) = 1 dA(t ; l )  
Xr,s;s ~s (q) (q2) 

(7.8) (1-q j/2) , 
j > _ l  

j=O ,+__r mod(m+2) 

where A = (m+3-s,s-l), t = (m+2-r,r). 

There are other formulas, similar to (7,8), which involve only integral j, 

and also, in some cases, multiplicative formulas for Vir , similar to that from 

Tables 1 and 2 for Vir. We present some of these formulas in Tables 3 and 4. 

m(q r(r+l) (2r-2)(q) = ) 
Xr,s;c ~ (q) ~. 

J 
, r(3r+2), (3r-2)(q) = ~ q  

Xr,s;e ~(q )  U J 
, r(3r+2), (3r-2)(q) = ~q ) 

X2r,s;s 9 (q) U 
J 

g(qS(S-l) (2s-4)(q) = ) 
Xr,s;~ ~(q )  U 

J 
m(qS(3S-2)) 

(3s-4)(q) = F[ Xr,s;s ~E(q) j 

(3s-4)(~) = ~(qS(3S,-2,)) 
Xr,2s;~ ~ ~ (q) U 

J 

Table 3 

(l_qr(r+l)j!rs/2) 

(1-q r(3r+2)j!rs/2) x TT (1-q r(3r+2)j±rs) 
j=odd 

(1-q 2r(3r+2)j!rs) x ~(l-q @(3r+z)/2)j±rs/2) 
j=odd 

(l_qS(S-1)j±rs/2) 

(l-q s(3s-2)j±rs/2) x TT (l-q s(3s-2)j±rs) 
j=odd 

(l-q 2s(3s-2)j±rs) x ~ (1-q (s(3a-2)/2)j±rs/2) 

j=odd 

Table 4 

@(4r-2)-(q) , r(r+½)) • ( i  qr(r+½)j+rs/2)  
r,s;~ = ~q~ (q) TT - - 

J 

~(qr(3r+l)) (l-q r(3r+l)j±rs/2) x ,(6r-2)-(q) =. TT. 
~r,s;~ ~¢(q) J 

r(3r+l)~ .~(6r-2)-, , ~q ) 
W2r,s;e kq) = ~ (q )  

(4s-4)-(q) = ~(qS(S-½)) TT(l_qa(S_½)j~rs/2 ) 
@r,s;e ~e(q ) J 

TT (1-q r(3r+l)j±rs) 
j=odd 

TT (l-q (r(3r+l)/2)j±rs/2) x TT(l+q r(3r+l)j+-rs/2) 

J J 

(m) ± 2)The definit iom of ~(m)± is c0mpletely s imilar  to that  Of ~r,s 
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, s(3s-1),r ~ (i qS(3s-l)j+rs/2) x (3s-1)j~rs) , (6s -4 ) - (q )  = ~kq )1-1" - -- ]-F ( l - q  s 
~r,s;~ ~q~ j j:odd 

, (6s -¢ ) - (~ )  : m(q s(3a-1))  
r,2s;~ H @ (q) ~(l-q (s(3s-l)/2)j+--rs/2) x~(l+q s(3s-l)j+-rs/2) 

J J 

@(4r-2)+, , 1 r,s;e kqJ - ~e(q ) ~(l-(-l)Jq r(r+½)j) x ~(l-(-l)Jq r(r+½)j±rs/2) 
J J 

@(4s-4)+t ~ 1 1 ~q) = @ (q----~TT( -(- ) q ) x T~o(l_(_l)jqS(S-½)j±rs/2) 1 J s (s-½)j 
r~s;E 

J J 

(m) and (m) as a sum of two Remark 7.2. It is always possible to write Xr,s Xr,s ; 

infinite products (using the Jacobi triple product identity) : 

(m)(q) : ~(q2(m+2)(m+3)) 
(7.9a) Xr,s ~(q) 

(7.9b) 

x [TT ( l+q (m+2)(m+3)j±((m+3)r-(m+2)s)) 
j ~ l  
j:odd 

_qrS TT (l+q(m+2)(m+3)J±((m+3)r+(m+2)s))] 

j~l 
j=odd 

(q) = ~(q(m+2)(m+4)) (m) 
Xr,s;e @(q) 

(m+2)(m+4) (m+4)r-(m+2)a 
2 J± 2 ) 

× [ IS ( l÷q  j> l  
j=odd 

rs (m+2) (m+4) (m+4) r+ (m+2)s 
2- 2 J+ 2 

- q TF (z+q )] 
j_>l 
j=odd 

Appendix 3. An application to the decomposition of tensor products of two level 1 

representations of exceptional affine algebras. 

In this appendix we will show that the affine Lie algebras E~ 1), E~ 1), 

A~ I) and A~2), E~ l) and E~ 2) provide s model for discrete series representations 

of the Vivasoro algebra with central charge Zm, where m = 1,2,3,4 respectively. 

Namely we will prove the following remarkable fact : taking tensor products of the 

basic representation with all level i fundamental representations of the affine 

algebras listed above, one gets (in the space of highest weight vectors) all 

discrete series representations of Vir for m = !,2,3,4 and exactly once. Turning 
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the point of view, "generalized string functions" [12, § 4.9] of the tensor product 

of two level 1 fundamental representations of the above affine algebras turn out to 

be nothing else but the characters of the corresponding discrete series representat- 

ions of Vir. 

As in Appendix 2, we will use freely the notation, conventions and results 

of the book [ll]. In particular, the enumeration of the vertices of the Dynkin dia- 

grams of affine algebras adopted here is that of [ll, Chapters ~ and 6]. 

First, we will prove a few facts about Kac-Moody algebras which are used 

later on. 

Lemma 8.1. Let g(A) be a Kac-Moody algebra with a symmetrizable Cartan matrix. 

Let A, A' ~ P and o ¢ W be such that M = o'A + A' E P • Then + + 

(a) mult A (M+p-w(A'+p)) is 1 if w = 1 and is 0 if w ¢ W, w ~ 1. 

(b) The multiplicity of L(M) in L(A) OL(A') is 1. 

Proof. Claim (a) for w = 1 is clear. If w # l, then (M+plA '+p-w(A'+p)) > O, and 

we have : 

I ~p-w(A '+p)l 2- IAI2: IM+p I 2+I w(A '+p)12-2(M+p Iw(A '+p)-(A'+p))-2 (M+p IA'+p)- ~ 12 

>IM+PI2+IA'+pI2-2(M÷p IA'÷p)-~ 12=iM+p-~ '÷p)121A IZ=Io.A~-IA 12=0. 
Thus, IM+p-w~'+p)IZ-IAI 2 > 0 and hence (by [ll, Proposition ll.4]),M+p-wO~ '+p) is 

not a weight of L(A), which completes the proof of (a). Claim (b) follows from (a) 
• • T! and the Racah "outer multiphclty formula (cf. [4]) ; the multiplicity of L(M) in 

L(A) @L(A') is ~ ~(~) multA(M+p-w(A'+p)). 
w ¢ WS2 v 

Further on, and A2V stand for the symmetric and antisymmetric 

square of the space V, respectively. 

Lemma 8.2. Let g(A) be an affine algebra of A-D-E type all of whose exponents 

are odd, and let A ¢ P+ be of level i. Suppose that L(M) occurs in L(A) OL(&). 

Then L(M) ~S2L(A) (resp. CA2L(A)) if and only if ht(2A-M) is even (resp. odd). 

Proof. Using a diagram automorphism of 

(basic) representation L(Ao) of g(A) 

¢[uj;j ¢ E+], where E+ = E+~ E and E is the set of exponents of 

the principal gradation is given by dog uj = j, and u. ¢ n and 
J - 

3uj e n+(Cg(A)), j ¢ E+ (cf. [ll], Chapter 14). But then 

I(2)' : ¢[xj,yj;j L(A O) @ L(A O) : ¢[u]l),uj , j ~ E+] ¢ E+], 

• = u(1)+u (2) and yj (I) u(2) J where we put xj j j = uj - j , so that x. ¢ n 

Thus a highest weight vector of 

degree is equal to ht(2Ao-M). 

g(A), we may assume that A = A O. The 

is realized on the space of polynomials 

9(A), so that 

and 3 ¢ n . 

L(M) is a polynomial in yj's whose principal 
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Since E consists of odd numbers, we deduce that 
+ 

sZL(Ao ) = ~[x] @ Ceven[Y]; flZL(flO ) = ¢[x] ®¢oddEY], 

where CevenEY ] (resp. ¢oddEY]) denotes the subapace spanned by all monomials in 

yj's of even (resp. odd) principal degree. This completes the proof of the lemma. 

Let now A be an affine generalized Cartan matrix of type X~ k)," let 

9(A) be the corresponding affine (Kac-Moody) algebra and let d = dim g(X N) be 

the dimension of the "underlying" simple finite dimensional Lie algebra. Let L(& ') 

and L(A") be two highest weight representations of levels m' = A'(c) and 

m" = A"(c), such that m',m" and m'+m" ~ -g, where g is the dual Coxeter number. 

Then (as has been mentioned in § 2), Vir acts on L(A') • L(A") commuting with 

9'(A), and formulas, corresponding to (2.J a,b) and (2.4) generalize as follows 

(of .  [ 1 2 ] , [ 1 8 ] )  : 

(8.1a) the central charge = dp(m',m"), where 

m ' m" m ' +m" 
(8.1b) p(m',m") = ~ + m"+g m'+m"+g 

(8.2) L0 = i [ (A'  IA'+2p) (A"IA"+2p) m'+g + m"+g -m'+m"+g ] +[-~4- 12Pglk 2] p(m',m"). 

Note that the second term on the right in (8.2) vanishes if k = 1 due to the 

Frendenthal-de Vries strange formula, whereas in cs.se k > i it is "alive" and 

will play an important role. 

The main result of this Appendix is the following theorem. 

Theorem 8.1. One has the following decompositions with respect to the direct sum of 

g'(A) and Vir : 

1) A = E~ I )  : 
I 

1 1  1 1  S2L(A0 ) = L(2A O) @ V(I ,0)  + L(A 7) ® V(~,~), A2L(A0 ) = L(A 1) @ V ( ~ , ~ ) .  

2) A = E7 (1)- : 
7 3 

S2L(A0 ) = L(2A O) ® V('IZo'o,0) + L(A5! O V('T~,~') , 

A2L(Ao ) = L(2A 6) ® V(T~, ~) + 
-- + 

3) A = A~ I ) "  : 

= ,(2Ao)  +  (AI+A2) 
4 2  

A2L(A0 ) = L(ZA0) ® V(--45,3) + L(AI+A2) @ V(~,~), 
42 41 

L(Ao ) @ L(AI) = L(2A 2) ® V(~,-~) + L(Ao+A I) ® V(~,T#)" 

A = A (2) : 

4 1 , ,4 13, 
S2L(A0 ) = L(2A 0) e V(--~,-~) + L(A 1) e v~,~,--~), 
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• , 4  2 1 ,  4 1 
AZL(Ao ) = L(2A O) @ vL~,~-~) + L(A 1) e V(~,~). 

4) A = E~ I) : 

6 5 , . 6  22, 
S2L(Ao ) = L(ZA O) ® V(6,0) + L(Al+A 5) e V ( 7 ,  ~) + L(A 6) ~ v L ~ , ~ ) ,  

• , 6  1 2 ,  6 1 
A2L(A8) = L(ZA O) e V ( 6 , 5 )  + L(AI+A 5) @ vLT, ~ )  + L(A 6) ~ V ( ~ , 7 ) ,  

6 4 L(Ao+A I )  e V ('~,'i"i') + L(A 4) e vL~,~i)  • L(A O) @L(A 1) = L(2A 5) OV(-~,-~) + 6 1 ,,6 10, 

A = E~ 2) : 

, , 6  23, 6 1 , ,6 33, + L(A4 ) e vtv,-~-) ,  sZL(~)  = L(2A O) eV(~,~-~) + L(A 1) e vk7, ~ )  

6 3  • , 6  85, 6 5 + L(A 4) e v ( ~ , ~ ) ,  A2L(~) = L(ZA O) D vkT, ~ )  + L(A 1) e V ( 7 , -  ~ )  

The proof of  the theorem is  based on the fo l lowing observations. Let 

A ~ P+ be of l eve l  1 and l e t  M ~ P+ be such that  L(M) occurs in L=L(A O) ~ L(A). 

Note that  M has l eve l  2 and M ¢ ~ + A + Q, where Q i s  the root l a t t i c e  of 

g(A). Let U M denote the sum of a l l  subrepresentations in L of the form L(M+sS), 

s ¢ 77. Then L decomposes in to  a d i rec t  sum of subspaees of the form U M. V i r  acts 
n + 

on U M with cent ra l  charge Zm, where m = 1,2,3 or 4 is  the number of claim of 

Theorem 8.1, and with respect to the d i rec t  sum of 9 ' (A) and Vi r  we have : 
n 

L = ~ (L(M) ® UM+). The eigenvalues of L 0 on UM + are, due to (8.2), of the 
M rood $~ 

form h (A) + 177, where 
2 

(8.3) h~A) 1 r (A [A+2p) (M I M+2 p ) : g+ l  - g+2 ] +  E d -  

On the other hand, since the representat ion of g(A) on L i s  un i ta ry ,  so i s  the 
n+ 

representat ion of V i r  on U M , hence the eigenvalues of  L 0 on UM+ are of the 
form h (m) + 77. 

r,s 

~A)mo d 1 of level 1 and all M s P of The values of h ~ 77 for all A s P+ + 

level 2 such that M ~ A 0 + A + Q are listed in the Table M below. 

The proof of Theorem 8.1 in all cases, except for the representation 

LOIo) OL(A O) of E~l),A~ 2)'' and A~ 1)," is obtained now directly by making use of 

Lemmas 8.1 and 8.2. 

The remaining cases require more calculations. We shall demonstrate them in the 

case of A~ l)." From Table M we see that L(~) 0 L(A O) for A~ 1)" decomposes as follows • 

L(Flo)~L(Ao)=L(2Ao)~V(4,0)+bl L _  4 4 7 4 2 (8.4) ( 2A 0 ) • V (~, 3 ) +b 2 L ( AI+A 2 ) ~ V (~,~) +b 3L ( AI+A 2 ~V (~,-~), 

where b. ~ 77 . z + 

In order to show that  b. = 1 and to d i s t r i bu te  each term in the r i gh t  hand 1 
side of  (8.4) to the symmetric or the skew-symmetric part ,  we compute the q-dimension 

of each component. In doing th i s ,  i t  su f f i ces  to know only coe f f i c ien ts  of qi for  
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0 ~ j ~ 9, since the lowest among leading weights 2A0, 2~-3~, AI+A2, AI+A2- ~ is 

2A0-36 and ht(3~) is equal to 9. The coefficients of qJ of q-dimensions are 

listed on the following Table Q, where #(q) = @(q)/~(q3). They are computed using 

[ll, Proposition 10.10]. 
Table M 

l 's t  level . . . .  hM(A')mod ~ 7/ 

A 0 2A 0 0 0 A'~ '2') A 0 2A o 1/40-- 21/40 

AO A1 1/16 1 1/8 = 13/8 

Aoi A 7 1/2 14 

A 0 2A 0 0 0 

A 0 2A 6 3/2 27 

A 0 A 1 1/10 1 

A0! A 5 3/5 1o 

% A0+A 6 3/8o 0 

A 6 A 7 7/16 7 

A 0 2A 0 0--3 0 9 

A 8 AI+A 2 2/5m7/5 4 1 

A 1 2A 2 2 /3  2 

A 1 A0+A 1 1/15 0 

m=3 A 0 A I 

E~ I) A 0 2A 0 0 s 5 

m=4 A0 AI+A 5 5/7 ~ 12/7 

6 
z4= 7 A 0 A 6 i/7 H 22/7 

A 1 2A 5 4/3 

A 1 A0+A 1 1/21 

A 1 A 4 10/21 

E~ 2) A o 2½ 1/56~85/56 

m=4 A 0 A I 5/56 ~ 33/56 

A 0 A 4 3/8 z 23/8 

l'st level 
S'2' A2 

0 3 

i0 i 

0 

8 

37 

60 

20 

1 

16 

0 

5 

0 27 

i0 1 

52 7 

Table Q 

q0iql q2 3 4 5 6 7 8 q q q q q q q  

~(q) dimq S2L(Ao ) 

~(q) dimq A2L(Ao ) 

9(q) dimq L(2A0)'X]~](q 3) 

L(2A0).X(31(q 3) q9~(q) dimq 4, 

q~(q) dimq L(AI+Az).X~Z;~(q 3) 

q&~b(q) dimq L(Al+A2) "X3' l~q(3)t 3,) 

1 1 1 1 2 2 4 4 7 8 

0 1 1 2 3 3 5 6 8  

Ii i0 1 1 1 1 3 2 4 5 

o!o ooo oooo 1 

0 1 1 1 2 3 3 5 6 7  

0 0 0 0 1 1 1 2 3 3  
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In Table Q, x~m) s(x) is as defined in Appendix 2, and we put x= q3 since ~i) 
ht 6 = 3. The statements for A in Theorem 8.1 follow immediately from Table Q. 

A similar proof works also for A~ 2) and E (1)" 6 , one has to compute the concerned 

q-dimensions up to the lO-th and 60-th power of q respectively. 

Remark 8.1. Theorem 8.1 covers all cases when tensor products of level 1 representat- 

Z < ions of affine algebras produce representations of Vir with l, except for A~ 1), 

covered by Theorem 4.1, G~ l) and F~ 1). Specifically, for A~ l) we have : 

1 ll S2L(A0 ) = L(ZA O) @ V(-~,0), AZL(A0 ) = L(2A 1) ® V(~.,~-), 
1 1 

L(A O) ® L(A I )  = L(Ao+A 1) ® V(-~,T~') • 

14 = 
For G~ I) the central charge is z7 =T5 ; putting u I S2L(A0) , U3 = S2L(A2), 

U 5 = L(A 0) @ L(A 2) , U 7 = A2L(A2 ) , U 9 = A2L(A0 ) , and L 1 = L(2A0) , L 3 = L(2A2) , 

L 5 = L(A0+A 2) , L 7 = L(A I) , we have: 

U = [ L @ V(z 7 h(7)~ . 
s r=1,3,5,7 r ' r,s' 

52 = = 
For F~ I) the central charge is z 8 = ~ ; putting U 1 S2L(A0 ) , U 3 S2L(A4 ) , 

U 5 = L(A 0) @ L(A 4) , U 7 = A2L(A 4) , U 9 = A2L(A 0) , and L 1 = L(2A0) , L 3 = L(2A4) , 

L 5 = L(A 0+A 4) , L 7 = L(A 3) , L 9 = L(A I) , we have: 

U [ L @ V(z~,h (8))  
r s=1,3,5,7,9 s o r,s 

Theorem 8.1 can be written in a similar compact form. 

Remark 8.2. It is fairly well-known that all unitarizable representations of Vir 
1 1 

with z = ~ can be constructed as follows. Fix s = 0 or 2" Consider the 

"superoscillator" algebra A 

Let VE = AE~j l j  -- > O, j ( e+~ ] 
A on V by (n > O) : 

on generators ~m' m ~ s + ~ , and defining relations 

[~m'~n]+ = ~n,-m " 

be a Grassmann algebra. Define a representation of 

3 
~n- ->  8~---~' ~-n --> (n ' ~0 --->~2 (~0 + 8(~) " 

Define a Hermitian form on V by taking monomials for an orthonormal basis. Let 

V + ( r e sp .  V~) denote  the  subspace of  V spanned by monomials of  even ( r e sp .  odd) 

degree, where deg ~j = i, all j. Put 

ii 
L 0 = g ( ~ - c )  + Z J *_ j * j  , 

+ 

1 ~ (2j-n) ¢_j+n~ j for n ~ O. Ln : 4 j ~S+~ 

1 + This gives irreducible representations of Vir with z = ~ on V--. Explicitly : 



370 

v<½0) i i + Vo 1 1 = = v ( g , - f ) ,  v o = v ( g , y g ) .  

No such simple construction is known (so far) for other discrete series representat- 

ions of Vir. 

Remark 8.3. Note the following remarkable coincidence. Let g be a simPle Lie 

algebra of type Es,E7,A 2 or E 6 and let ~ be the associated sffine algebra. 

Then all highest weights of the representations of Vir that occur in all pairwise 

tensor products of all level 1 representations of ~ are of the form (Zm,h) , where 

m = 1,2,3 or 4 respectively and h is precisely one of the critical exponents of 

the Ising, tricritical Ising, 3-staLe Ports and tricritical 3-state Ports models 

respectively (cf. [5]). In other words, the h (m) that occur in 2-dimensional 
r~s 

statistical models are precisely those which correspond to non-twisted affine 
algebras. 

Remark 8.4. The same argument as above can be applied to the study of the problem of 

restriction of a unitary highest weight representation of an affine algebra ~ to 

an affine subalgebra ~, where p is a reductive subalgebra of reductive algebra g. 

In our next publication we will classify the pairs (g~p) for which the central 

charge of the Virasoro algebra is less than 1 and calculate the corresponding 

generalized string functions. 
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STRUCTURE OF KAC-M00DY GROUPS 

J. Mickelsson 

Department of Mathematics 

Un ivers i t y  of Jyv~skyl~ 

SF-40100 Jyv~skyl~ 

Finland 

For a phys ic i s t ,  a Kac-Moody algebra is the current  algebra of a quantum f i e l d  

theory model in I + I  space-time dimensions with an in terna l  symmetry group G [ I ] .  
A 

More p rec ise ly ,  l e t  ~ be the Lie algebra of G . The Kac-Moody algebra g is a 

one-dimensional central  extension of the loop algebra Map(S I , g )  . I f  f l  ' f2 C 

Map(S I ,~ )  , then the commutator is defined point -wise,  

[ f 1 ' f 2  ](~) := [ f l  ( ~ ) '  f2 (~)]  " ( I )  

The centra l  extension is defined by a 2-cocycle 0: Map(S I , g__) x Map(S I ,~)  ~ ~ ( fo r  

an in t roduct ion to the use of group cohomology in physics, see re fs .  [2 ] ,  [3 ] ;  fo r  a 

more general mathematical t r e a t i s e ,  see [4] )  

2~ 
e ( f l  f2 ) = 4-~ ~ < f 1 ( ~ ) ,  d f2(~ ) >d~ (2) , - ~  , 

where <.,.> is  the K i l l i n g  form on ~ ; in the ad jo in t  representat ion <X, Y> = 

t r  XY . The modif ied commutator is 

[ f l  ' f2 ] (~)  = [ f l  ( ~ ) '  f2 (~) ]  + i p 0  ( f l  ' f2 ) " ( I ) '  

A A 
Here p is a constant; i f  there is a group G corresponding to the algebra ~ , then 

p is an in teger .  An a l t e rna t i ve  way to wr i te  the commutation re la t ions  ( I ) '  is ob- 
. (n )  ( n E ~ )  of a map f :  S I ta ined using the Fourier components ^a ~ ~ in an or to-  

normal basis X I . . . . .  X N of ~ , 

x(n ~m)] : ~c x(n+m) + i p (3) 
[ a ,X ab c ~ n ~n,-m aab ' 

C 
where the Xab s are the s t ruc ture  constants of  ~ . 

a 

In th is  lec ture I shal l  expla in the s t ruc ture  of the group G having as i t s  Lie 
A 

algebra the algebra ~ . The discussion w i l l  be rather  formal in the sense that  any 
A 

de f i n i t i ons  regarding d i f f e r e n t i a b l e  (Banach manifold) s t ructures on G w i l l  be avoid- 

ed (these have been studied in de ta i l  in [5 ] ,  [ 6 ] ) .  I t  would be natural  to s t a r t  from 
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the Ansatz ~ = Map(S I ,G) xU(1) w i th  the m u l t i p l i c a t i o n  

(FI ' X I ) ( F 2 ' X 2  ) = ( F I F 2 '  X l x2exp  2~im(F I ,F2 ) ) , (4) 

where F I , F 2 E Map(S I ,G) , x1 ' X2 E U(1) and m(F I , F 2) is some real valued func-  

t i on  of  F I and F 2 ; here (F I F  2 ) ( ~ )  := F1(m) F2(~) . However, i t  turns out tha t  

in  general ( f o r  an a r b i t r a r y  G ) there does not e x i s t  any 2-cocycle w which would 

give i n f i n i t e s i m a l l y  the Lie algebra cocycle e . As shown by Pressley and Segal [5 ] ,  
A 

there is topo log ica l  reason f o r  t h i s  f ac t ;  one has to th ink  of  the group G as a non- 

t r i v i a l  f i b e r  bundle s i t t i n g  over the base space Map(S I ,G) w i th  f i b e r  U(1) . The 

cocycle m can be def ined on ly  l o c a l l y  in  Map(S I ,G) . In t h i s  lec tu re  I w i l l  give 
A 

an a l t e r n a t i v e  way to [5 ] ,  [6] fo r  the const ruc t ion  of  the bundle G . We sha l l  study 
A 

the s t ruc tu re  of G d i r e c t l y  in  terms of local  coordinate charts and loca l  cocycles. 

Our treatment is motivated by the recent research on cohomology of  gauge anomalies [7 ] .  

In f ac t ,  the bundle ~ is homotopical ly equ iva len t  to the determinant l i ne  bundle of  

a massless Dirac operator in  I + I  dimensions ( the base space there is the set A/G 
of gauge group o rb i t s  in the space of  a l l  g-valued vector  po ten t i a l s )  [8 ] .  

We sha l l  s t a r t  from the topo log ica l  dens i ty  

= I t r (dFF-1)3 (5) 2 

I t  is known tha t  the in tegra l  of  the 3-form C(F) over S 3 is an in teger  ( tha t  i s ,  

when F is a smooth map from S 3 to G ) . By a simple computation, dC = 0 , and 

therefore C = dH , l o c a l l y ;  H is some 2-form. In f ac t ,  there is  an e x p l i c i t  formula 

fo r  H(F) when F = exp X ( X is a g-valued func t ion )  [9 ] ,  

H(X) = t r d X h ( a d X ) d X  , (6) 

I s inh z - z  
h(z) = - ~ z2 (7) 

Le t  us consider the case G = SU(2) as an ( t y p i c a l )  example. For each a £ G l e t  

V a c Map(S I ,G) cons is t  of  loops F such tha t  F(x) _*-a fo r  a l l  x E S I . For 

loops Map(S I ,G) = U V Let B = {X E ~1½ t r  X 2 < 2 }  Then the expo- smooth 
- aEG a 

nent ia l  map exp: B ~ SU(2) " - - { - I }  is one-to-one; the sphere t r  X 2 = 272 is mapped 

onto the po in t  - I  . Any loop F in  V a can be extended to a map ~: D ~ S U ( 2 ) ~ { - a } ,  

where D is the un i t  disc w i th  boundary S I = ~D . Now a - I  ~ is a map in to  

SU(2) \ { - I }  , and there fore  a - I  ~ = exp X , where X is a uniquely  def ined B-valued 

func t ion  in  D . Next we can def ine the t r a n s i t i o n  func t ions  

f o r  the 

hab: V a n V b ~ U(1) , hab = exp 2~iBab 

A 
U(1) bundle G , 

Bah(F) = f (H(In a - I  ~) - H(In b - I  ~))  . 
D 

(8) 
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We shal l  show that  hab(F) does not depend on the extension ~ fo r  a given F . I f  

F', are two extensions taking values in SU(2) ~ { - a , - b }  , then we can define a smooth 

map ~: S 2 = D+ U D ~ SU(2) \ { - a , - b }  by j o in ing  ~ along the common boundary 

~D+ = S I = ~D The d i f fe rence fo r  the two extensions gives 

~(+)IF~ - ~b ) (F )  = f (H(In a - I  ~) - H(In b - I  ~))  = f (C(F  a ) -C (Fb ) )  9) ab ~ J 
S 2 D 3 

where D 3 c ~3 is the closed un i t  b a l l ,  aD 3 = S 2 , and F = aexpX a , F b = bexpX b 

fo r  some extensions X a , X  b of In a - I  ~ , In b - I  ~ to th~ un i t  ba l l  D 3 . We can 

define a map F . :  S 3 ~ G from F .and F~ by jo in ing  two ba l ls  D 3 along the 
aD 9 q ~ 

common boundary S: = ~D ~ (since F a $2 = F b $2 ). We obtain 

Bab(+)(F) - B~b)(F) = ~ C(Fab) . (10) 
S 3 

The r ight-hand side is always an in teger  and i t  fo l lows that  exp 2~i~ is wel l -def ined.  

In order to construct the 2-cocycle m and to understand i t s  re la t i on  to anom- 

a l ies  in two dimensional Yang-Mil ls theor ies we shal l  consider the second Chern class 

of the f i e l d  F = dA + [ A , A ]  , where A is a g-valued vector potent ia l  in four d i -  

mensions, 

C 2 = t r  F AF = ~ t r  c ~ ~vF. ~ . (11) 

Loca l l y ,  in the domain of d e f i n i t i o n  of A , 

c2 = d ~ ,  ~ = t r (AdA+  ~ A3) . (12) 

Let g be,a gauge t ransformat ion and denote Ag = g - I A g + g - l d g  . We can define 

= d t r  Adgg-1 _ 8 2  C(g) = d ( t r  Adgg-1 _ 8 2  H(X)) ; (13) 

the l as t  equation holds fo r  g = exp X . Thus am~ = dm~ fo r  a 2-form w~ . Next we 

consider the va r i a t i on  6m~ , 

= t r  gi I dg I dg 2 g~1 + 82 (H(X I )  + H(X2 ) _ N(X12) ) , (14) 

where gl = exp X I , g2 = exp X 2 and g lg2 = exp X12 . Note that  m~ is the anom- 
alous va r i a t i on  of the Fermion determinant in a two dimensional f i e l d  theory ( l e f t -  

handed massless fermions min imal ly  coupled to A ).  By a d i rec t  computation d ( a ~ )  

= 0 ,  so ~m~ = dm~ , at least  l o c a l l y  fo r  some l - form m~ . In p a r t i c u l a r ,  i f  the 

G-valued funct ions gl and g2 are defined in the un i t  d isc ,  then 

I dg I dg 2 g~1 _ ~ (N(XI) + N(X2 ) _ N(X12) ) (15) trgil 
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depends only on the boundary values on S I , modulo an in teger :  I f  F± and G± are 

def ined in  D such tha t  F+ = F_ and G+ = G on the boundary, then we can again 

def ine F ,G :  S 2 ~ G by j o i n i n g  along the equator S I . Let us assume fo r  the moment 

tha t  a l l  maps have an exponent ia l  representa t ion.  Denoting the expression (15) by 

~(gl ' g2  ) we get 

I S t r F  - I d F d G 8  - I  + f ( H ( I n  FG) -H( In  F ) - H ( I n  G)) m(F+ ,G+) -m(F_ ,  G_) : T ~  2 s 2 

- T ~  2 -  i D 3~ ( t r  F - I d F ( d G 8 - 1 )  2 + t r (F  - I d F )  2 d88 - I )  + ~3 (C(E) -  C (F ) -C (8 ) )  

= f (C(E) -C(F8) )  , (16) 
D 3 

where E: D 3 G is an extension of FG: S 2 ~ G obtained using any extension of  

In FG to D 3 . Now E = FG on the boundary $2 = ~D 3 and we can def ine ~: S 3 ~ G 

by j o i n i n g  along S 2 . Thus the d i f fe rence  (16) is equal to 

f c(~) = n c m ,  
S 3 

and we conclude tha t  exp 2~m is we l l -de f i ned .  

There is s t i l l  a-problem: The formula (15) f o r  ~ r e l i e s  on the exponent ia l  re- 

presentat ion of the loops. In general ,  a loop in  G does not have a smooth l i f t  to 

a loop in  the Lie algebra ~ . Let us re turn to our example G = SU(2) . I f  F and 

G are two loops in  SU(2) , then F E V a , G E V b and FG E V c f o r  some a , b , c  E 

SU(2) . Choosing extensions ~ , G  to the un i t  d isc D such tha t  ~ , G  and F~- do 

not meet a ,  b and c , respec t i ve l y ,  we can def ine 

I S t r  ~ - Id~dGG-1 + f ( H ( I n c - 1 ~ G )  - H ( I n a - 1 ~ ) - H ( I n b - I G ) )  , 
mabc(F,8)  = 8--~ D D 

(17) 

where a l l  the logari thms are chosen in  B c g  . Exact ly  as in (16) we can show that  

the r igh t -hand side does not depend on the extensions ~ and G , modulo an in teger  

(note tha t  C(a - I f )  = C(f) f o r  a constant a C G and fo r  any map f i n to  G ). 

Next one can show by a d i r ec t  computation tha t  f o r  E E V a , F E V b , G E Vc , 

EF C V k , FG E V 1 and EFG E V m , 

~abk(E, F) + ~kcm(EF,G) = ~ b c l ( F , G )  + ~alm(E, FG) . ( !8)  

Equation (18) is in  fac t  the d e f i n i t i o n  of  a real valued 2-cocycle on Map(S I ,G) . 

With the help of the local  cocycles ~abc and the t r a n s i t i o n  func t ions  hab we can 

now def ine the group _~ . As a set ,  _~ consists of  equivalence classes of  t r i p l e s  

(F ,  ~ , a )  , where a E SU(2) , ~ E U(1) and F E V a , w i th  respect to the re la t i ons  

(F ,  ~ , a )  ~ ( F , ~ h b a ( F ) ,  b) (19) 

when F E V a n V b . The product of  the equivalence classes [ ( F ,  ~ , a ) ]  is  given by 
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[ ( F ,  ~ , a ) ] [ ( G , ~ ,  b)] = [(FG, ~ exp 2~i mabc(F ,G) ,c ]  , (20) 

where c E SU(2) is any element such that  FG E V c From the equations (8) and (17) 
i t  fol lows that  

ma,b,c, (F,G) = mabc(F, G) + Baa,(F) + ~bb,(G) - Bcc,(FG) (21) 

when F E V a N V a, , G E V b N V b, and FG E V c N V c, . As a consequence, the product 
of the equivalence classes in (20) is wel l -def ined.  The assoc ia t i v i t y  of the group 

mu l t i p l i ca t ion  law in ~ fol lows at once from the cocycle condit ion (18). 

There is an a l te rna t ive  more geometric method to construct a local 2-cocycle, 
near the un i t  element in G . F i r s t ,  one can define a 3-cocycle m(3)(gl ' g 2 ' g 3  ) on 

G by set t ing 

_ I f t r (g  -I  dg) 3 (22) ~ ( 3 ) ( g I '  g2 '  g3 ) - 2-~2 
A123 n 

where A12...n = {(x I . . . . .  x n) E (~+)  I x  1+x  2 + . . .  +x n ~ I }  is an n-simplex and 
g = g ( r , s , t )  = g1(r) g12(s) g123(t) is defined by the one-parameter subgroups g1(r ) ,  

g12(s) and g123(t) such that  g i ( I )  = g1 '  g12 ( I )  = glg2 and g123(I) = glg2g 3 . 
Note that  near the un i t  element in G for  each element g there is a unique one-par- 
ameter subgroup g( t )  Such that  g(1) = g . The coboundary ~m (3) is by de f i n i t i on  

[3] 

6m(3) (g1 'g2 '  g3 'g4  ) : m (3 ) (g1 ' g2 '  g3 ) + m(3)(g2'  g3 '  g4 ) 

- ~(3)(g12 '  g3 'g4  ) + m ( 3 ) ( g l ' g 2 3 ' g 4  ) - m (3 ) (g1 ' g2 '  g34 ) " 

We denote g i l  . . . i v  = g i l  " ' "  giv " By eq. (22) the r ight-hand side is equal to the 
integral  

I f t r (g  - Idg )  3 , (23) 
24x2 @~1234 

where g is defined in the four dimensional simplex A1234, g(t  I , t 1 2 , t 1 2 3 , t 1 2 3 4 )  
= g 1 ( t l ) . . ,  g1234(t1234) . According to Stokes' theorem the integral  (23) is an in te -  
gral over A1234 of the 4-form d t r ( g - l d g )  3 ; by a simple computation, th is  form is 
i den t i ca l l y  zero and thus ~ ( 3 )  = 0 , which means that  ( 3 )  is indeed a 3-cocycle. 

Suppose next that  the elements gl ' g2 and g3 depend on a var iable x E S I . 
Consider the l- form 

~ ( 3 )  3 i 
: ~ dx f t r ( g - l d g ) 2 a x  g- ldg)  

A12~ 
I dx f t r ( g - ' d g )  ax(g -I  dg) (24) 

=8--~ @A123 
where ~ is the ex te r io r  der ivat ive  with respect to x . On the other hand, 

~m(3) (g1"g2 '  g3 ) = (6m(2))(g1'  g2 '  g3 ) = - m ( 2 ) ( g l ' g 2  ) + m(2)(g2' g3 ) ' -  m(2)(g lg2 '  g3 ) 
+ m(2)(g I , g293 ) , where 
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I f m(2)(g I , g2 ) : - 
A12 

The integral  

m(gl ' g2 ) = ~ ~(2)(gI ' g2 ) 
S I 

defines a local 2-cocycle on Map(S I ,_G) . 

gets by integrat ion from (25) the formula 

t r (g  -I dg) dx ax(g -I dg) 

Writing gl = exp Z I , g12 = exp Z12 

(25) 

(26) 

one 

(_1)n 
= I S t r  nZ 0 ~ (SxZ12)(ad ZI~) n Z I (27) 

m(g1' g2 ) ~ SI : 

This form of the 2-cocycle was derived in [10]; i t  is not equal to the form (15) but 

i t  represents the same cohomology class. There is also a closed exp l i c i t  formula for 

, which is val id  for  G = SU(2) , given in [11]. 

The Lie algebra cocycle e defines a symplectic form on the subgroup MaP0(S1, ~) 

consist ing of maps F with F(1) = I E G . Namely, the tangent vectors to MaP0(SI,G) 

can be thought of as elements of Map(S11~) which vanish at I E S I . Thus the co- 

cycle e is a 2-form on MaP0(sl ,G) , with constant coef f i c ien ts ,  ~nd therefore de 

= 0 . I t  is c lear ly  non-degenerate; consequently e is symplectic. What is import- 

ant from the standpoint of geometric quantizat ion, is that e is in tegra l :  Take any 

set F(~, o) of loops in MaP0(sl ,G) parametrized by ~ E S 2 . Then 

f e = 4-~ f t r ( F - 1 ~ t F )  ~x(F -I ~sF) d tdsdx  - I ~ t r (F  - IdF)  3 =2~n 
S 2 S2xS I 127 S2xS I 

where n E ~ . Because of de = 0 there are local l-forms ~ on Map(S I ,G) such 
I d m(etX , F) where X E that d~ = e ; in fac t ,  one can take ~(F ;X)  = % ~  It=0 , 

Map(S I ,~)  is a tangent vector at F E Map(S I ,G) . F inal ly ,  there is a natural inner 

product in the space of sections of the associated complex l ine  bundle to the principal 
A 

bundle G , [6] ,  therefore we have the essential parts of a machinery for  quantization 

in the phase space (MaP0(S1,G),e) , in the s p i r i t  of Kostant and Souriau, [12]. 

In physics l i t e ra tu re  the Lie algebra cocycle e is often cal led a "Schwinger 

term". The geometry of Schwinger terms can be studied also in higher space-time d i -  

mensions jn the s p i r i t  of the present lecture. However, there is one essent ia l ly  new 

phenomenon (as compared to the present case). Namely, the Lie algebra (and group) ex- 

tensions are in f in i te-d imensional .  For example, in the case of Map(S 3 ,G)  the group 

U(1) has to be replaced by the group Map(A 3,  U(1)) , where A 3 is the space of g-  

valued vector potent ials in S 3 (point-wise mul t ip l i ca t ions) ;  th is re f lects  the fact 

that in 3+ I  dimensions the Schwinger terms depend on the vector  potent ia l ,  [13]. 
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INTRODUCTION 

The infinite-dimensional Lie algebras are among the most inter- 

esting objects which appear in a series of models in two-dimensional 

space-time (see e.g. [I], [2]). Such algebras connected with some dif- 

ferential operators can also arise in other spaces, with higher dimens- 

ions [3]. 

In particular, in the present work we find two infinite dimension- 

al Lie algebras which act on and preserve the set of solutions of the 

Laplace equation, in four-dimensional Euclidean space. The first one 

is connected with all the substitutions preserving those solutions 

and it is constructed on the base of the Fueter analyticity condition 

for the functions of quaternion variables [4], [5], [6] and [7]. The 

second algebra is composed from a set of differential operators of 

arbitrary orders. 

§I. As well known, the Witt type infinite-dimensional algebra 

may be considered as a Lie algebra corresponding to the conformal trans- 

formations of the complex plane. Analogously representing the four- 

dimensional Euclidean space as a hypercomplex space IHl(a space of the 

quaternions) we can construct some infinite Lie algebra using the 

Fueter analyticity. The method we are going to describe in this sect- 

ion may be generalized for the cases of spaces with dimension higher 

than four. A very suitable object for these generalizations is the so 

called Clifford analysis [8], [9], [10]. Note that this analysis is 

based on the Clifford algebras and the quaternion division algebra, 

in particular, is a Clifford algebra. Let e. (i = 1,2,3) be the three 
1 

pure imaginary quaternion units: 

(I) eiej = - @ij + Cijk ek 
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Then let us denote the operator 

+e.3 (2) D = ~ + e{~x~ - D ° i l 
O 1 

By definition the quaternion function f(Xo, Xl, x2, x3) is 

Fueter analytic if and only if the following condition is satisfied: 

(3) Df = 0 

It is easy to verify the identity 

(4) D= DD 

where s = 22 + 32 2 2 o I + 32 + 33 is the Laplace operator and D = 3o-ei3 i 

is a quaternion conjugate to D(D and D commute). From (3) and (4) 

we obtain that every Feuter analytic function satisfies the Laplace 

equation 

(5) DDf E DDf z of = 0 

Remark: Let us note that the Feuter condition (3) coincides with the 

free Maxwell equations in quaternionic form. In this case the function 

f is pure imaginary. 

We can obtain also the so called Cauchy-Riemann-Feuter conditions 

[5] from the expression (3). To do this, we must write the function 

f in the form: 

(6) f = R + e.J 
1 

where e i is one fixed quaternion unit. In particular, we may select 

i = 3. In this case the functions R and J depend on 

(7) ~+ = x o ~ elx I and q+ = x 3 ~ elx 2 

only. These new variables are commutative. 

Then the operator D takes the form: 

(8) D = 2~ + 2e3~ q 

From (3), (6) (with i = 3) and (8) we obtain the Cauchy-Riemann-Feuter 

conditions : 
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DR ~J DR ~J 
(9) ~_ = +~q-- ; ~_ = d%~+ 

Analogously, if we select i = 2 or i = I , then we may obtain 

also two other forms of these conditions. But we shall consider the 

upper case only, because all three cases are equivalent to one another. 

Now we are going to propose a method to construct those functions 

which will satisfy the conditions (9). For this, let us consider any 

arbitrary analytic function of two complex variables W(ZlZ2) , where 

(I0) z I = u I + ivl; z 2 = u 2 + iv 2 (i = -//~) 

(Ul, u2, v I and v 2 are real). 

Let U(Ul,Vl; u 2 v 2) and V(Ul,Vl; u 2 v 2) be the real and imagi- 

nary parts of W(Zl,Z2) respectively. Then it is easy to verify that 

the following functions 

(11) R = U(8_,n+;~+,n_) + cU(~+,n_;~_,n+) 

(12) J = V(~_,~+;~+,q_) + cV(~+,~_;~_,~+) 

where c is an arbitrary constant, satisfy conditions (9). 

Remark: The function U(~_,q+;~+,~_) is obtained from U(Ul,Vl;U2,V2) 

with the change 

(13) u I ÷ ~_; v I + ~+; u 2 ÷ ~+; v 2 + ~_ 

and so on. 

One must use the usual Cauchy-Riemann conditions to prove this 

statement. 

The correspondence between the two kinds (Feuter and usual) of 

analytic functions allows to define a set of nonlinear transformations 

preserving the Feuter analyticity. This means that such transformations 

will preserve alsothe solutions of the equation (5). To construct this 

transformations, let us consider the general conformal transformations 

in the set W of all usually analytic functions W(Zl,Z2) of two 

complex variables. If 

(14) W1(Zl,Z 2) 6 W; W2(Zl,Z 2) 6 W 
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then we also have 

(15) w' iZl,Z 2) = w[w I (Zl,Z2) , w2(zl,z 2 

The change 

]6w 

16) Zl ÷ w1(zl,z2) ; z 2 = w2(zl,z2) 

is some conformal transformation t in W: 
wlw 2 

(17) W(Zl,Z2) ÷ w' (Zl,Z2) 

Because the functions W(Zl,Z2) and w[w1(zl,z2),w2(zl,z2) ] are both 

analytic, we may construct the corresponding Feuter analytic functions 

f and f'. Then the transformation t between the two functions 
w w WlW 2 

from (17) will appear between the two Feuter analytic functions 

f and f': 
w w 

(18) f ÷ f' ~ T f 
w w WlW 2 

Therefore, the transformation T is a nonlinear realization of 
WlW 2 

t in the set of Feuter analytic functions, t and, 
WlW 2 WlW 2 

of course, T are infinite parameter transformations and 

WlW2 (~ has infinite dimension. their Lie algebra T 

The generators of the real Lie algebra may be denoted as 

n;n n ;n 
X -~ and iX ~ -~ (i = -~ 

where ~ = ~ I and n I and n_1 

relations have the form: 

are integer numbers. Then the commutation 

n ;n_~ mB;m B ] 
X , X B j = 

_ +I n+ma;n +m_~ 

6eB(m a - n~) x a 

n~+mB+1;n~+m e 
+6 ,_B(m + I) X B 

-6 ,_B(n B + I) X n~+me+1;nS+m8 

The obtained algebra is a D type algebra according to Kac class- 

ification [11]. It contains a finite subalgebra coinciding with the 

Lie algebra sl(3,C). 
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§2. In this section we are going to consider another possibility 

to construct an infinite Lie algebra connected with the Laplace operat- 

or. We may imagine that equation (5) has arisen from D'Alembert equat- 

tion (free massless scalar field theory in Minkowski space-time) after 

the compactification by Cayley transformation. Then we may consider 

the stress-energy tensor 0 9(z) in the compactified form. In the cor- 

responding quantum theory this tensor also determines some infinite 

Lie algebra. To find some representation of this algebra, we introduce 

the free scalar field ~(z). 

Then the infinitesimal operator 

(19) 

commutes with ~(z) 

0 = f6 (x)0 o(X)d3x 

in the following way: 

(20) [@,~(z)] = L(~(z)) 

where L is a differential operator. 

Because ~(z) satisfies equation (5), 

it. 

L(~(z)) also satisfies 

The differential operator L depends on an infinite number of ar- 

bitrary parameters, because the infinitesimal functions 6 (x) are 

completely arbitrary. The general form of the operator L is the 

following: 

(21) L = n=o Z A~1~2...~n(Z) ~ I~ 2...~ n (~i = 0,1,2,3) 

The functions A~I ~2...~n(Z) are assumed to depend on the infinite 

number of parameters. In general, we may suppose that 

A (z) are completely traceless, because the operator L acts 
~I ~2"''~n 

on the functions satisfying (5). Then we will obtain the 

following equations: 

2 A (z) = ~ (z)- []A 
(22) ~ ~{~I ~2~3"''~n } {~IR2 g~3"''~n } ~I~2"''~n (z) 

where the curly brackets mean a symmetrization of the indices inside 

them, and g ~ 3 " ' ' ~ n ( Z )  a re  some f u n c t i o n s  exp re s sed  by the  d i v e r g e n c e s  

from A (z). 
~2~3'''~n-i 
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The solution of the latter equations can be obtained and the part 

of the operator L that acts only on the positive frequency part of 

~(z) has the form: 

-z~ 
L ++ = E a z z ...z :e P P:~ 

n,k BI~2"''Bn ; 9192"''9k ~I B2 ~n 91~2"''~k 

: : denotes normal ordering; a - arbitrary con- 
"'' ~I ~2"''~n;Vl~2"''~k 

stants having two (~,s and ~,s) groups of indices, each of them is 

symmetric and traceless. We may take the basis elements of the alge- 

bra in the form: 

t 
BIB2 "''~n v192"''~k 

-z 

= sytl(zB1z~2...Z~n):e P P 
:~l~2"''~k 

(sytl = symmetric + traceless). 

To write down the commutation relations, we introduce the follow- 

ing notations: 

fl 2~ n/2 
(23) En,£'m(~) = ~ I Dn,~,m(U~); ~ = ~/~ Ug; 

n>0 u2=1 
where 

Dn,i,m(U ) = /~ 2£+Ii! ]/(n-_%! ! CI+% (8,~0) • V(n+i+1) ! sini~ n-~ (cosl) Y~,m 

and 

(8,~) = V (2Z+1)4~(£+m)(k-m)! ' P£1ml (cos8) e im~ Y~,m 

In these formulae 1,8, ~ are the polar angles in four-dimensional 

space; ck(x) are the Gegenbauer polynomials and YEm(0,~0) are the 
n 

usual spherical functions. The functions (23) are linear independent 

and they form a 0(4) irreducible basis in the set of the solutions of 

the Laplace equation. 

Then we may rewrite the generators in the form 

-z 
(24) Xklm;ni,m, = Ek,~,m(Z): e P P: En,~',m' (2) 

with the following commutation relations: 
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(25) 
Xn '" "' m"' ' Xn"Z"m";n'E'm'I ,Z,m;n 

= n" ! 8n"n'" ~£"Z"' 6m"m"' Xn~m;n'Z'm' 

- n' ! ~nn' ~i£' 6mm' Xn"z"m";n'" ~"' m'" 

For the sake of simplicity, we shall consider some part of our 

algebra only. Let us define the new operators 

I 
= Z k! Xn+k+1,£+',m+s;k+1,~, s 3 3  (26) Qn,£,m k,j,s 

Obviously, QnEm belong to our algebra. Using the relations (25), we 

may obtain the following expression: 

(27) [QnEm, Qn,z,m,] 
\ 

This means that QnEm 

Witt type. 

It has a central extension, which we obtain using the usual methods 

in the following form: 

= (n'-n) Qn+n',i+E',m+m' 

form the infinite dimensional subalgebra of the 

(28) [Qn£m' Qn'z'm'] = 

= (n '-n) Qn+n' ~+£',m+m' + ~Z+£',m+m' n(n2-1) ~n+n',0 

This algebra is a Virasoro type algebra, but the coefficient 

depends on the £'s and m's The usual Virasoro algebra ~£+~',m+m' 

is a subalgebra of our algebra and may be obtained if we put 

£=£'=m=m'=0. 
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I. INTRODUCTION. PRELIMINARIES 

I.l. Infinite dimensional Lie algebras are inherent to any quantum theory 

of an infinite system. The classification of inequivalent representa- 

tions of the algebra of canonical commutation relations (the Heisenberg 

algebra) by G~rding and Wightman and by Segal is an early memorable 

result about such (generalized) Lie algebras. It was not, however,until 

physicists' attempt to use current algebras in the mid 60's and their 

success in studying the Virasoro algebra (first in the framework of 

dual resonance models - see [G2, VI~ MI~, then also in 2-dimensional 

quantum field theory (QFT) - see e.g. ~F2,9~), and the parallel mathema- 

tical development of Kac-Moody algebras (for recent reviews and further 

see [K2] and  VOMP] )and the study of central extensions references 

of the algebra of diffeomorphisms of the circle (see EGl~ ), that in- 

finite dimensional Lie algebras became an essential part of modern 

mathematical physics. With the revival of (super)string fashion the 

field became so croweded that one has to make a choice (for a small 

sample of current papers in which the applications of (super)Virasoro 

algebras to strings is a dominating theme see ~VOMP] as and Kac Moody 

well as [AI-4; CI,2; F5,6; Gg; NI,4,5; TI]). 

We shall restrict our attention to QFT models including the field 

theoretical description of critical phenomena of two-dimensional sta- 

tistical systems, greatly advanced recently in the work of Belavin, 

Polyakov and Zamolodchikov ~B~ which initiated a flow of papers ([D2,3, 

4, F7,8~ G7, KT, Ii, 01, T4,5, ZI~ ). Since the theory o~ Kac-Moody and 

Virasoro algebras has been worked out (and reviewed) in a number of ma- 

thematical publicaitons (~F1,3,4, Gg, KI-4]) and in lecture notes by 

(and for) physicists [G4,O2, TS] I shall only briefly sketch - in Sec. 

2 of this Introduction - some facts about these infinite dimensional 

(graded) Lie algebras and their relation to 2-dimensional models. 

A new view on the minimal theories of ~BI] is explored in Part II. 

Composite conformal ('quasiprimary') fields are constructed and used 

to write down explicit global OPEs. The notion of a pure primary field 

is introduced in Sec. 4B and used to associate a finite cyclic group of 

conformal families for the Ising model and its 3-critical extension ,the 
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multiplication being related to the 'fusion rule' of [B~ for group 

OPEs. 

Some steps in extending the 2-dimensional conformal techniques to 

four space-time dimensions are presented in Part III.Acomplex 0-torsion 

and 0-curvature frame bundle on compactified Minkowski space M~---U(2) is 

introduced in Sec. III.l. A new treatment of free O-mass fields on M is 

given in Sec. III.2 using expansion in homogeneous harmonic polynomials 
zg 

(of a complex 4-vector z~ and ~ ). Composite conformal fields and 

light-cone 0PEs are studied in Sec. III.3 using the techniques of Part 

II. 

Formulas of the introductory Part I are labelled by (I.l), (I.30). 

Equations in Parts II and III are numbered by sections (like (1.1),(4.19)). 

References in Part III to formulas of Part II are given as (II.4.6). 

1.2 PRELIMINARIES ON THE ALGEBRA OF CONSERVED TENSOR CURRENTS IN 

2-DIMENSIONAL QFT 

2.A Conformal stress-energy tensor and conserved chiral currents as 

fields on a circle. The traceless stress tensor ~ in I+i dimensions 
i 

has two independent components, which, as a consequence of the conserva- 

tion law ~=-- 0, can each be taken as a function of a single light- 

-cone variable 

g ] - 

(the signs in the definition of ~ and are so chosen that they both 

decrease with increasing time), e and etransform under 1-dimensional 

representations of the Lorentz group S0(I,I); for X --~ Ax, 

A =  
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They are called right and left moving fields, respectively.(Note that 

the b~ on ~ and on e is not related to complex conjugation.) According 

to a LUscher-Mack theorem, reviewed in ITS] , dilation invariance (with 

eM~having dimension 2) allows to compute the local commutators of 

and ~and to find all their vacuum expectation values which turn out to 

be invariant under the projective conformal @roup SL(2,~)xSL(2,~). 

Their asymptotic behaviour allows - and makes it advantageous - to for- 

mulate the theory on compactified space-time-i.e., on the torus M=slxs 1. 

To this end one usesaCayley transformation for each of the light-cone va- 

riables: 

~=z -~ _ ~ 2 -" -- etc. 
5 

It maps the real line ~ onto the unit circle Izl 

Then the compact picture stress energy tensor is defined by 

(I.2) 

= 1 with _+(~-~ z=-i. 

(T.3) 

and a similar expression for the left moving components. Local commuta- 

tivity implies 

IT(z), T(z')] = O, (I.4) 

so that, as far as the stress energy tensor is concerned, the theories 

on the two circles (Izl = 1 and Izl = i) completely decouple. 

Similarly, a current j~(x) of dimension 1 (in a dilation invariant 

theory), that is conserved togehter with its dual, 

has a right and a left moving components given by 

] ~ ( ~ ) =  (;O(X)~';'(XO, ~ (~) "~--~(}O(X)--}'(~)~o ( I . 5 ) - -  

The corresponding compact picture current is 

_ 4 4 ~  
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We assume that the vacuum state in the two pictures is the same so that 

we can 'translate' the vacuum expectation values from the non-compact 

to the compact picture. 

2.B The Virasoro algebra for the stress tenso R current algebras. One 

immediate benefit of using the compact space picture arises from the 

fact that the counterpart of the Fourier integral - at least for fields 

of (half)integer dimension - is the Fourier-Laurent series: 

To exhibit the hermiticity properties of the fields (I.7) one should re- 

memeber that the image of the real line (~) is the unit circle, the 

upper and lower half-planes are mapped onto the exterior and the interior 

of the circle. The involution which gives the relevant conjugation in 

the complex z plane is the inversion 

1 
z-~ (1.8) 

Z 

(where z s t a n d s  f o r o r d i n a r y  complex c o n j u g a t i o n ) . T h e  h e r m i t i c i t y  c o n d i -  

t i o n  for a field ~(~) of dimension~ reads 

It is straightforward to verify that T(z) and J(z) are hermitian iff 

L, , , , .  " = L -  = 

This is the property which justifies the choice of labelling of the 

Laurent coefficients in (I.7). 

The above mentioned LUscher-Mack theorem implies that the L satisfy 
n 

the Virasoro commutation relations 

where c is the 'central charge' ([¢,Ln] = O) and ~n+m stands for the 

Kronecker symbol ~ n ' - m "  F o r a  (compac t )  i n t e r n a l  symmetry group w i t h  

hermitian Lie algebra generators I satisfying 
a 
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la,lb] = ifabcl c (1.12) 

the 'charges' Qa (defined by (1.7) for J = ja) obey the commutationrules 
n 

i (I.13) 

For a simple (non-abelian) group G these are the defining rleations for 

a Kac-Moody Lie algebra; in the mathematical literature one often uses 

the notation 

Qa = I ~ t n, 
n a 

which allows to write (1.13) in a basis independent form: 

Here l,J belong to dG, the Lie algebra of G; f,g are elements of C[t,t-~__ 

the algebra of polynomials in t and t-l; <l,J> is the Killing form, 

normalized in such a way that <l,J> = tr IJ for the fundamental (lowest 

dimensional, faithful) representation of dG. 

The infinitesimal space-time transformations of the current are 

generated by the Virasoro operators: 

o r  

(l.14a) 

(1.14b) 

Thus, the operator algebra of a 2-dimensional conformal theory with a 

continuous internal symmetry includes the semi-direct product of (two 

commuting copies of) the Virasoro algebra with the (corresponding copies 

of the ehiral) current algebra, which is (just as well as each facto) a 

graded Lie algebra. 

The commutation relations (I.ii) (I.13) (1.14) allow to write down 

all vacuum expectation values of products of T's and J's; we have 
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_ ~  ~ , ~ : .  
( z ~  = ~ - 5 0  - ~.z ~,,. ~ ,  ~ . ,  

2.C Verma modules and lowest weight (LW) unitary irreducible representa- 

tions (UIRs) of the Virasoro algebra. Energy positivity implies that the 

spectrum of L on physical states should be bounded below. That is why 
o *)W 

we are interested in LW representation of the Virasoro algebra ° 
^ 

If IA>is a LW vector of W, 

(to - , ~ ) l a >  = O, I_o .>,~, (T.~6) 

then the relation (L + n -~ )L I~ = O, which follows from (I.ll), 
o n 

implies 

L , , ,  I , a>  = 0 #or , = , 1 .  ~ . , . . .  (I.17) 

(4 is the intercept of the corresponding Regge trajectory in the termi- 

nology of dual resonance models). A Verma module is the representation 
^ 

space V for Wforfixed (real) c spanned by all the vectors of the 
c ,~ 

form 

L,.~ L_~,....L_,,~ I,~> with "1'1,~"1"1~>~ .- .  ~'1~. k ~ .  (I.18) 

V is an inner product space, the inner product of any two vectors of 
c,A 

the basis being evaluated from (I.ll) (I.16) (I.17) under the assumption 

that 

*) The notation W for the Virasoro algebra reminds that it is a central 
extension of theW~Ai~algebra W, i.e. the algebra of diffeomorphisms of 
the circle generated by the first order differential operators --Z ~@Id 

2i" 
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The vacuum IO> is a special case of a LW vector characterized by 

being $1(2)-invariant (and having zero charge in the presence of a 

continuous internal symmetry): 

L IO> = O for n~ -I (0 IO> = O for n~ O). (I.20) 
n n 

We note, that for c # O, the Virasoro commutation relations (I.ll) imply 

that L I O~ 60. Since, on the other hand, the condition c > O is a 
-n 

consequence of the non-vanishing of the stress-energy tensor in a positi- 
^ 

ve metric Hilbert space, we deduce that W is never a symmetry of the 

quantum theory. Only the projective conformal group, generated by L 
o 

and L±I, can be a symmetry of OFT Green functions. Instead, the algebra 

of operate products for LW UIRs of Wwitha fixed central charge c can be 

regarded as a mathematical expression of the corresponding conformalQFT. 

This observation leaves room for the hope to extend the 2-dimensional 

techniques of this and the following chapters to higher number of space- 

time dimensions. 

Two questions arise: (i) when is the inner product in V positive 
^ C,~ 

definite? (ii) when is the representation of W acting in Vc, h irredu- 

cible? 

The answers to both questions come from the analysis of the Kac de- 

terminant M N of inner products of all vectors of the form (I.18) for 

fixed N = nl+ ...+n k. (The number of such vectors is clearly equal to 

the partition function P(N), i.e. to the number of different ways in 

which the positive integer N can be split into a sum of positive inte- 

gers.) Kac ~KI 1 has demonstrated that for a fixed c the possible zeroes 

of all MN(C,~) are labelled by two positive integers p and q and take 

the values 

(I.21a) 

where 

(I.21b) 
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It follows that for c> 1 and ~ 0 all M N are positive and the correspon- 

ding representation of W are unitary and irreducible. (For i< c ~ 25 

there are no real zeroes of MN; for c~25 such zeroes exist, but cor- 

respond to non-positive dimensions.) On the contrary, for 0~ e~ i 

there are non-negative ~ for which M N vanishes. The repre- 
P,q 

sentations of W at such points are reducible and unitarity,in general, 

fails for c<l. It is remarkable that for a series of such exceptional 

values, 

c=i- 6 
(x.22) 

_[ (m.23) 

V (o) of zero length vectors the space Ve, A admits an invariant subspace c,A 
A /v (o i s  u n i t a r y  and t h e  r e p r e s e n t a t i o n  o f  W i n  t h e  f a c t o r  s p a c e  Vc, ~ C, 

and i r r e d u c i b l e .  These  e x c e p t i o n a l  p o i n t s  c o r r e s p o n d  t o  p h y s i c a l l y  i n -  

t e r e s t i n g  2 - d i m e n s i o n a l  m o d e l s  o f  p h a s e  t r a n s i t i o n . M o r e o v e r ,  t h e  c o r r e -  

l a t i o n  functions of the primary fields of dimensions ~, satisfy 
P,q 

linear differential equations which make the models exactly soluble. To 

see how this comes about we consider the condition for having a "null- 

vector" at level 2. In other words, we would like to find a relation 

between c and ~ for which a vector of the form 1~+2,,E>=(L_~ -~L--~ 
is LW vector. To this end it is sufficient to find conditions for which 

a vector of this type is annihilated by L 1 and L 2. We have LII~+2,¢>= 

=(#Z~+~- -6~ ) IA>=0;  ±his Elves C =t8~('1+2~)-~-g~ 

i n  a c c o r d  w i t h  ( X . 2 3 ) .  

Remark.  Each d i m e n s i o n  i n  t h e  r e c t a n g u l a r  r a n g e  o f  p and q i n  ( I . 2 3 )  i s  

e n c o u n t e r e d  e x c a t l y  t w i c e ,  s i n c e  ~ ( m )  d o e s  n o t  c h a n g e  u n d e r  t h e  s u b -  
P , q  

s t i t u t i o n  p - ~ m + 2  - p ,  q - - ~ m + 3 - ~ .  Fo r  t h i s  r e a s o n  i t  s u f f i c e s  t o  c o n s i d e r  

t h e  r a n g e  l ~ q ~  p ~  m+l i n  o r d e r  t o  o b t a i n  e v e r y  d i m e n s i o n  f e x a c t l y  
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once (of, IF7] ). In studying the so-called "fusion rules" IBIS, however, 

it is advantageous to have the A's defined for all points in the rectan- 

gle (taking the symmetry into account - see See. II.4). 

The unitary postulate for e<l was explored in [F~where it was 

argued on the basis 0f some numerical computations that the points (I.22) 

(I.23) are the only ones that may correspond to Verma modules with posi- 

tive semi-definite inner product. The fact that the factor representa- 

tions at these points (modulo the invariant subspaees of zero norm ~ 

vectors) are indeed unitary was demonstrated - in an elegant application 

of the Sugawara formula - by Goddard, Kent and 01ive[G~ (see also [K4,5~). 

It is clear that such a unitaritypostulateis necessary for a QFT 

(Minskowski space) interpretation of the corresponding critical models. 

its relevance for statistical mechanics, however, (in which the postulate 

appears as 0sterwalder - Sehrader reflection positivity in the Euclidean 

formulation) is open to discussion. 

We shall say more about the simplest example of the discrete series 

(I.22), the case m = 1 (c =~)--the critical Ising model~ in Part II. 

2D. Few words about the super Virasoro algebra. It was noted that the 
^ 

Virasoro algebra W appears as a central extension of the algebra of first 

order differential operators in a complex variable zwithpolynomial coef- 

ficients in z and z-l.similarly, one can define the N=I Super Virasoro al- 
^ 

gebra W k as a central extension of the Witt algebra of super differential 

operators, in the even variable z and the odd variable ~,that preserve 

the conformal class of the 1-form [K3~ 

A basis for this "super Witt" algebra is given by the differential ope- 

rators 

^ 

~e " (l.2~b) 

The parameter ~ labels the conformal weight of the representation of 

this infinite dimensional Lie superalgebra. The central extension again 

(I.25a) 
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adds just one new generator, the central charge c. The supercommutation 

relations of the operators L and G~ , corresponding to 1 and ~_ after 
n n -~ 

the central extension, are 

[L,. ,  L,,,,.] = ('~-'~)L.~+.,,, .  + ~ ~(~ ' - i ) ~ . . . ~ ,  1.26a) 

1 . 2 6 b )  

-~} E~~ T2~c) 
The case )C = 0 coincides with the Ramond algebra [RI~ , the case )C = 

is the Neveu-Schwarz algebra IN2] 

We note that for ~c = ~ the operator ~_~ ~ ~ - ~  

square root of 1 = -- 9_. 
-i ~)~ 

A 

appears as 

= (1.27) 

(g_~ has the properties of iD where D is the superderivative 

D 2 satisfying = ~). 

In the Neveu-Schwarz case the odd operators Gn+ ~ are generated by a 

(conserved) local Fermi current 

with a translation 

~÷~ ~-~-~ 

invariant 2'point function: 

( I . 2 8 )  

< g ~,) C-(,,_)>- 2-c 
3 

-3 
(~4 -~) , (i.29) 

The unitary representations of the superVirasoro algebra are obtained 

for c ~ 3/2 , ~ 0  or 

c = 3 / 2  ( t  8 ) ,  m = 0 , 1 , 2  . . . .  ( I . 3 0 )  
(m+2) (m+4) 

and a suitable spectrum of allowed oonformal weights Z~ for each 

(see [FT, 8~ G5~ K3,4,5] ). The LWUIRs of the semidirect product of m 
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the superVirasoro algebra with a supersymmetric current algebra were 

constructed in [K3~ . Concerning recent field theoretical and string 

theoretic applications of the super Virasoro and the supercurrent al- 

gebra see e.g., [B2, D2,EI,F6,8~ (the second reference IF6] also contains 

bibliography). An N:2 supersymmetric extension of the Virasoro algebra 

is considered in [AI7 . 
~ J 

II. PRIMARY AND QUASIPRIHARY FIELDS. OPE 

II.i Basic notions 

We started with a field theoretical notion - the notion of a conser- 

ved tensor current (in particular, with the stress energy tensor T) and 

ended up with an infinite dimensional Lie algebra (the Virasoro algebra 
A 

W, in the case of T). Then we apparently forgot about field theory and 
A 

started constructing Verma modules and LWUIR's of W. The notion of a 

primary field, introduced in [BI] , provides a link between LW represen- 
A 

tations of W and local QFT. 

Roughly speaking, a primary field ~(z,~) is a field that transforms 

homogeneously under reparametrization and gauge transformations. 

Since neither the current J nor the stress tensor T (I.7) mix z and 

we can consider the transformation properties in each variable separa- 

tely. The homogeneous law for an infinitesimal reparametrization of the 

first argument (z) for a field of conformal weight~ ~n z reads 

If furthermore ~ transforms under a finite dimensional representation 

of an internal symmetry group G with infinitesimal (hermitian) generators 

I associated with a conserved current J (z) then the homogeneous gauge 
a a ' 

law for a primary ~ is 

(1.2) 

here Qa are the Laurent coefficients in the expansion (I.7) of J . In 
n a 

particular, if ~ is a complex field that carries an electric charge e 

(corresponding to an U(1)-gauge group) then (1.2) is true with 
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Qa = Q and I = e. 
n n a 

The current J (z) provides an example of a primary field - of weight 
a 

(i,0) - under reparametrization, which is not primary under gauge trans- 

formations, since eq.(I.7) and (I.13) imply 

( 1 . 3 )  

((Ib)ac = ifab c in this case). 

Remark For non-integer ~ the notation ~(g) might be misleading, 

since ~ is not a single valued function on the circle (respectively, on 

the torus). Instead, it can be regarded as a function on the real line 

(for z = e ie) or, alternatively, as a local section of a fibre bundle 

on $i. The following proposition shows, however, that the vector function 

~(z)lO> is single valued analytic in z for Izl < i. 

Proposition i.I If ~ is a local field in a theory in which the energy 

of all states is positive, then the vector function ~(~)I0> admits 

analytic continuation in the 2-disk IzI~l, IzI<l. If ~ is primary of 

weight (A,~) under reparametrization, then 

(o,o)1o> = lz , Z> ( 1 . 4 )  

A 
is a LW vector in the corresponding Verma module for W@W. 

Proof. The analitici~property of ~(z,z)lO> is a consequence of the 

known analyticity of ~M(~,~)I0> in the product of upper half planes in 

any theory satisfying spectral conditions; here ~M Minkowski- is the 

space field corresponding to the compact picture field under the Cayley 

transformation, described in Sec. 1.2A. (In order to have analyticity 

in the upper half plane for both ~ and ~ it was necessary to use the 

awkward looking sign in (I.ib).) The second property is a consequence 

of the definition (i.i) of a primary field and of the characterization 

(I.17-18) of a LW vector of W. 

Warning: An operator field with a nontrivial Laurent expansion like 

J(z) (I.?) is not defined for z=O; however, J(O)lO> exists nevertheless 

since the operator coefficients to the negative powers of z annihilate 
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the vacuum. 

As the symmetry group of the class of theories under consideration 

is the 6-parameter projective conformal grou p SU(l,l)xSU(l,l) (or its 

covering group), not the infinite Virasoro algebra, it is desirable to 

have a name also for the fields which are covariant under UIRs of this 
~) 

group. We say that the field ~(z,z) is quasiprimary if it satisfies 

(i.i) for n=O, ~i. The stress energy tensor T(z) provides an example 

of a quasiprimary field which is not primary, since 

Correlation functions of quasiprimary fields are eonformally invariant; 

2- and 3-point functions are determined from this property up to constant 

factors. In particular, the 2-point function of a pair of quasiprimary 

fields transforming under disjoint representations of the projective 

conformal group vanish. This allows, as we shall see, to expand products 

of (quasi)primary fields in a series of integrals of mutually orthogonal 

quasiprimary composite fields of different dimensions. 

11.2 Two concepts for "frequency parts" of conserved currents 

We can also write (as in ~4,5~ ) an integrated form o£ the defini- 

tion (i.i) (1.2) of a primary field, which makes use of a notion of 

frequency part for J and T. For a field with a Imurent expansion, like 

(I.7) we can define a negative frequency part by the sum o£ the negative 

powers of z in its Laurent series; thus, 

(-)(~) ~ ~-~-~ 
T = Z--  L, , ,  . 

*) This is the term adopted in [B~ (see Appendix A). The concept is 
older and applies to any number of space-time dimensions - these are 

the 'basic' (as opposed to derivative)conformal fields of [C3 ~ TS~ (see 
also earlier work cited there). Note also that the term 'primary' is 

only used in ~i~ for fields transforming homogeneously under reparame- 
trization. It was extended to gauge covariant fields in [T4~ where also 
the relevance of this extension for the algebraic treatment of the 
Wess-Zumino model [KT~ and for the Thirring model EDI] was exhibited. 
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Similarly, we define the positive frequency parts of J and T by 

],. c,,)= :r~,,)- :~,-'~ (= ~,_ a_.  ~,~-,)/. %,(~,=T~.,- " 

Eqs.(l.l) and (1.2) then give (for ~(Zl,Z I) abbreviated by ~(i)) 

[T'-~(z), ~P(',t)] = I ~ ( t )  

(2.1b) 

(2.2) 

(2.3) 

Simple and useful as these formulas are, they also have a shortcoming: 

they are not conformally invariant. Indeed, if a current is a quasipri- 

mary field its frequency parts are not. We have, for instance, 

[ L ] = d ( , ,  - (2.4) 

instead of (I.14). This defect has been turned into a virtue in refs. 

~T4,~ where it was demonstrated that the non-invariance of the normal 

product 

is exactly compensated by the non-invariance of the derivative B for 

a field ~ of positive ~, so that an equation of the type ~ +:J~:=O 

(for a suitably normalized current) is conformally invariant. 

Remark There is one exception to the non-invariance of frequency parts: 

a free (say, charged) field ~ of conformal weight (~,O) can be split 

into two SU(l,l)-covariant components 

~_~)~  ~ ='~ 
_ _ • (2.5) 

The point is, that Eq.(l.l) for ~ = ~ implies 

[L c k_ - -~-+ {, (26) 

SO that ILl, c ~] = 0 = fL_l,Cl/~]. Moreover, we can construct a current 
out of ~ and ~ with frequency parts 
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• * - I_ c,, = J%)- 

different from (2.1) and SU(l~l)-covariant. Their commutation relations 

with the field ~ also change and involve its frequency parts: 

-- ~_~ 

c* ½3 ;o, 

(2.8) 

"--" ~41,rl, ~ ° 

If we set 

~G Z I (2.9) 

then we can also write the following W-covariant counterpart of (I.i) 

and (1.2): 

, ~% "~ ~ (2.10} 

II.3 Renormalized composite quasiprimary fields and OPE on sl. 

A QFT on the circle is defined by a reducible positive energy repre- 

sentation of the algebra of observables which includes the Virasoro al- 
^ 

gebra W. The representation space is spanned by vectors o£ the form 

T(Zl)...T(z n) ~(z)lO> where ~ runs over the set of all primary fields 

of the theory, n=O,l .... In particular, the vector valued distribution 

~l(Zl) ~2(z2)I0~ can be expanded in a sum of such confo~mal families 

for any pair of primary fields ~ and ~. Accorinding to [I I] the set 

of LWs for W should be such that the corresponding characters transform 

under a linear representation of the modular group SL(2,Z)(cf./K~3). 
We shall single out the simplest cases, in which the vacuum OPE of 

~4~ contains a single conformal family of dimensions~3+n, n = 0,i .... 

2 ~ l o  (which A3~ O. If we define the superselection operator U = e 

commutes with algebra of all conserved conformal currents), then ~i~210> 



404 

would span a coherent subspace o f  U, (U--g2~)~(Zl) ~2(z2)I0>= 0 in 

such models. 

Remark The existence of conformal OPEs should be regarded as a basic 

postulate in the present approach. It can be justified in a Lagrangian 

framework for a renormalization group fixed point - in any number of 

space-time dimensions - provided that the product of fields is applied 

to a finite energy state (say, to the vacuum) - see [D3, C4] and referen- 

ces therein. 

We first consider the case in which the minimal dimension ~3 appea- 

ring in the 0PE of ~i ~2 is positive. The following simple fact was 

recognized by 1970. 

Let ~i' i = 1,2,3 be three (not necessarily different) quasiprimary 

fields of weights ~.. Their conformally invariant 2- and 3- point func- 
i 

tions are determined up to constant factors and have the form 

where ~i are determined from the 'conservation of dimension' law: 

(For a proof, 

Proposition 3.1 

see e.g. [T5,~ where earlier work is also cited.) 

[~4 ] Under the above assumptions if~ 3> 0 and 

the bilocal field 

satisfies 

, ~ .  ,4. 3 (L ) -  , ) =o 

(3.3a) 

(3.3b) 

then its OPE has the form 
~ r(&*&+~.) E ~ 

~I~ ' = 
0 

0 (3°4) 
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where O(z) are composite quasiprimary fields given by 

• ~ , ~ , ~ j  ~ (3.5) 

Dn(¢~,~) i s  a homogeneous p o l y n o m i a l  d e g r e e  n e x p r e s s e d  i n  t e rms  o f  a 

Jacobi polynomial: 

4 5  

I k ( 3 . 6 b )  

The normalization in (3.4) is chosen in such a way that 043 = ~3(for 

~3 satisfying (3,1)). 

Proof. The form of the differential operator D is determined from 
n 

the requirement that the composite field (3.5) is quasiprimary, so that, 

in particular, 

) v~3W. 1% a ..#- "W. ( 3 . 7 )  

Using the fact that the bilocal field (3.3) has infinitesimal conformal 

transformation law 

~ndition (3.7) is then satisfied iff D satisfies the partial differen- 
n 

tial equation 

, 

E q . ( 3 . 6 )  g i v e s  the  unique homogeneous po lynomia l  s o l u t i o n  o f  (3 .9 )  

normalized by 

D (4'~)( 1 ,-i) = i. (3.i0) 
n 

The u-dependent weight in the integral in each term of the expansion 

(3.4) is fixed by the relation between 2- and 3- functions which is 
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reduced to the integral formula 

(The e x p a n s i o n  o f  b o t h  s i d e s  i n  ~ g i v e s  a l l  t h e  moments o f  t h e  w e i g h t  

and h e n c e  d e t e r m i n e s  i t  i n  a u n i q u e  w a y . )  

t f  ~1  and ~2 a r e  t h e  same h e r m i t i a n  f i e l d  so  t h a t ~ 3  = 0 we must  

s u b t r a c t  t h e  vacuum e x p e c t a t i o n  v a l u e  i n  t h e  d e f i n i t i o n  o f  t h e  b i l o c a l  

field BI2. We shall illustrate the necessary changes in Proposition 3.I 

for the important special case in which ~i = ~2 = T(z). 

proposition 3.2 The bilocal operator 

(3 .12 

(where c is the central charge of the Virasoro algebra) admits the fol- 

lowing OPE : 
I 

5 

" t  £ 

~ = t  -1 

where ~k(A) are the normalized weights 

(3.13 

[ 
P" = k (k  

I 

and the composite fields T2n are give~ by 

(3 .14 

O (z,z) 

~n particula,P T2(z) = lim T2(ZlZ2) 
z ~z2-> z 

= T(Z). ) 

(3.15) 

The proof follows the argument of Proposition 3.1. We have here no free 

normalization (of the type appearing in Eq.(B.3~since the n-point func- 

tions of T are determined by the commutation relations 
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[ A- 
I t  i s  r e m a r k a b l e  t h a t  E q s . ( 3 . 5 )  a n d  ( 3 . 1 5 )  d e f i n e  r e n o r m a l i z e d  c o m p o -  

s i t e  f i e l d s  w h o s e  m a t r i x  e l e m e n t s  a r e  f r e e  o£ d i v e r g e n c e s .  The l a t t e r  

p r o p e r t y  f o l l o w s  f r o m  t h e  a b o v e  c o n s t r u c t i o n  f o r  m a t r i x  e l e m e n t s  o£ 

products of % ~ .  and T2n with the f i e l d s  ~1  ~2 and T's, respect ive ly .  

h closer look shows that it is actually true in general. We shall content 

ourselves by verifying that the limit (3.15) exists for the 4-point func- 

tion <T(Zl)T(z 2) ~(z 3)~(z4) > where ~ is an arbitrary primary field 

of dimension,~.This 4-point function is determined from the Ward identity 

(2.2) to be 

hence, 

does have a limit (together with its partial derivatives) for Zl-~Z 2. 

(The general result follows from the fact that the singularities of 

n-point functions of T2(z~z 2) in z12 are also determined from the Ward 

identity (2.2) and do not exceed those of the 4-point function.) 

We shall see in Chapter III that the above construction of renorma- 

lized composite conformal operators also extends to 4-dimensional models. 

Its importance is enhanced by the fact that the small distance behaviour 

of massive theories is expected to coincide with that of a conformally 

invariant massless limit (like in the case of the 2-dimensional Thirring 

model). 
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11.4 Fusion rules and 0PEs in minimal theories. The Isin8 model. 

4A. 0PEs involving conserved tensor currents. 

For generic values of c and A there are just two cases for which 

the minimal value~3 in the 0PE (3.4) is known. One, when the fields ~I 

and ~2 are hermitian conjugate to each other so that~ = 0, and another, 

when one of the factors, say ~i' is a conserved current (for instance 

T(z)) of the family of the unit operator, so thatA 3 =A 2. It is instruc- 

tive to write down the 0PE in these special cases. 

The 3-point function of the "electromagnetic" current J(z) with a 

pair of conjugate charged fields ~and ~ is determined by the Ward 

identity (2.3) (with I replaced by the charge e) to be a 

(4 .1)  

If ~ is a pure primary field of dimension A (i.e. if only the confor- 

mal family of the unit operator appears in the 0PE of ~)then the bi- 

local field 

h a s  a n  OPE o f  t h e  f o r m  
i 

3,, SI ; 

Here Nj is a normalization constant appearing in the current 2-point 

func t i on, 

Z~z 

(4 .4)  
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The current, the stress energy tensor and the higher rank conserved 

tensor currents 0 are expressed as (renormalized) composite fields of 
n 

~(i) ~ (2) in terms of limits of derivatives of the bilocal operator 

~,~  : 

.](~}= N~.,, ~.-,o "~  BW'-~(';'{'~-{)' (4.5a) 

_ C (~+~, ~- ~)~ % (4.5b) 

(~-i)l 0 ~'~ D a'~)/~ ,~ Y5. {~,,~). (4~c) 

Similarly, for the product of a current with a charged field we have 

= ~!r(z~+~-~) ~u ~(i- Oa÷ n .. 

2 
An expansion of type (4.6) is also valid for the bilocal field zi2T(Zl)~ 

~(z2), The leading term then is 

~(2~-i)(2~-~) ~:d,~ ~ ~-~)~'a-s~c~+~z,,.). (4 7) 

Eqs.(4.6) and (4.7) imply the identities 

£-->0 £ ~ 0  
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4B. 

(I.23) the following "fusion rule" has been established in [BI] 

Fusion rules for minimal theories. For c and ~ given by (I.22) 

)  rk, t] 
t = i i , -q~ l *~  

p, q are the two integers in the rectangle Here, 

(4.9)  

1~/ *_~¢n+1,  I - < $ ~ _ 4 < + 2  cot c = l  6 
(~.~v_~,~' ~ ~ ~ 

(4.20) 

(1.23); k and trun over that label the allowed lowest weights /~ (m) 
P,q 

those integers of the same parity 

which belong to the rec tang le  (4 .10) .  Moreover, because of the equ iva len-  

ce between  the  r e p r e s e n t a t i o n s  FP 'q ]  and Em+~ - P, m+3 - q ]  , o n l y  the  

intersection of the sets of [k,1] appearing for various products of 

equivalent representations should be taken into account. 

These rules indicate that the space of states spanned by ~[I)~2)~0~ 

-----~Ii)~$.~ ~) is not a coherent sPace (for the superselection operator 

2~iLo) U = e . We shall demonstrate that in the two simplest Ising type 

models, form=l,2, a coherent basis of fields can be chosen (on the 

expense of allowing a greater than one multiplicity for some of the LWs 

/~ . It turns out that the 0PE algebra of "pure conformal families" 

P'q Z for m=1,2 is isomorphic to the cyclic group 2m(m+l)" 

Indeed, identifying for both m=l,2, the field ~ ~ith a (complex) 

field of dimension A2,2(m) we can write symbolically the fusion rules 

for pure primary fields as follows: 
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m = 2: 

(4 .13)  

where the corresponding weights are written in parantheses. It is easily 
verified that if we set [2,2~ = ~+ ~+~'~,~ = ~ ,~2,~=~3~ 
~,3] = ~+~ ~,~ =~then the multiplication rules in (4.13) agree 
with those in (4.9). (The easiest way to derive (4.13) is t~ start with 

a group of two generators, say f and g, settin~ [1.2] =sf+f3 ~2~i~-g+g 
and to factor with respect to the identities g- =i = f , g = f .) 

4C. The critical Ising model. We shall display the field theoretical 
construction behind the "fusion group" in the simplest case m=l, in 
which it is isomorphic to the cyclic group ~4" The 0PE algebra in this 
case is generated by a complex primary field ~) of weight 1/16. Its 
powers correspond to the composite primary fields 

which do not depend on the choice of the point z'. Normalizing the 

2-point functions of ~ and ~ 

( 4 . 1 4 ~ )  , 

we can characterize the model by a single constant N appearing in the 

3-point function: 

= (4 .17)  

The 2-dimensional fields, the energy density ~ (z,~) and the local 

spin ~.(z~z~ of the critical Ising model are expressed in terms of the 

pure primary fields ~(z) and ~(z) and their composites ~ and ~ by 
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It is remarkable that the splitting of ~ into two factorized terms 

corresponds to a similar splitting of the 4-point function of ~ . For 

small z12 and z34 the first two terms in the expansion of this 4-point 

function are (in accord with the exact expression evaluated in Appendix 

E to ref. [BI] ): 

+ ( ~  Z~ - ,vg 
~ 3 ~ 1 ~  (4.19) 

thus N =~. 

We recall that the constant N is fixed in [Bq from 

either crossing symmetry or singlevaluedness of the Euclidean 4-point 

function. 

III. THE ALGEBRA OF FREE MASSLESS FIELDS ON COMPACTIFIED SPACE-TIME 

]]I.0 Introductian 

The motivation for studying compact space models of the Universe is 

multifold. Reasons vary from alleged explanation of 01bers' paradox (of 

why the night sky is dark) to attempts to get rid of infrared divergen- 

ces . 

There are special reasons for considering conformal field algebras 

on compactified Minkowski space N. Among other things,(i) it gives 

room for global conformal transformations; (ii) it provides a natural 

discrete basis for conformal fields and thereby a refined machinery for 

defining renormalized normal products of quantum fields. 

The theory of free massless fields on M (and on its universal cover, 

the globally causal cosmos ~ ~ ~ixS3) has been studied systematically 

by Segal and Panei~ [PI,2] within their analysis of conformal space- 

time bundles. We offer here a different approach to this - basically 

elementary -problem which can be characterized as follows. 

If one only gives physical meaning to the conformal structure of 

space-time - i.e., to the causal order of events (in a given neighbour- 
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hood), or to the ratio of Lorentz intervals in the tangent space at each 

point, then one should allow for complex conformal factors in a confor- 

mally flat space-time (for definition and basic properties of conformal 

mappings and conformally flat spaces see, eJg. [P3] Sec. 1.8 and 

chapter 6 or sec. 1 of IT2] ). It turns out that there are two distin - 

guished (complex conjugate) conformal factors on M~U(2), which lead 

to a zero Riemann curvature tensor (Proposition 1.4 of sect. IC). Our 

choice corresponds to a metric form 

" ~ ' + ' "  d~;") (o.l/ dz  = d ~_" + d ~  ( d:~Z = d , , ~  + 

on M where z~ are expressed in terms of Minkowski space Cartesian coor- 

dinates x ~ by 

_ ) - , ,  o) & (~+~__; .x ,  _, - x" -~ x"" 
(X ~- ~-" kt~). (0 .2)  

(These expressions are related to the Cayley transform of complex 

quaternions in Sec. lB.; see also [UI,R2J.) 

It may be instructive to add a couple of remarks about the reasons 

behind the conventions concerning numerical factors and signs in Eq.(0.2) 

(which differ from those used in our previous work [T2,3,6] ). 

Clearly, Eq.(0.2) presupposes that the coordinates x ~ (and z~ ) are 

dimensionless. There is an inherent conformal invariant scale, associated 

with compactified Minkowski space M: this is the radius R of the 3-space 

$3 (for fixed z2). Indeed, if we replace in (0.2) z by R-iz and x by 

R -I : R2e ~i~ x, we shall have (for real x) z 2 so that the 4-vector 
-i~ 

ze belon G to a real 3-sphere of radius R. Identifying - in accord 

with Segal [SI-~ R with the radius of the Universe, it is natural to 

assume that for x ~ small compared to R the compact picture coordinates 

~ g-~ ~ and R~ coincide with the Minkowski space coordinates 

and x ° up to terms of order (~)~. This is indeed the case for z 

given by (0.2); we have 
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It is tempting to identify - following Segal - the parameter ~ with the 

physical time variable and to equate the corresponding conjugate variable, 

the compact conformal generator ~- , with the true Hamiltonian. 

Our second remark concerns the choice of sign of ix ° in (0.2). If 

(z) is a compact picture local quantum field and [O> is the corres- 
*) 

ponding conformal invariant vacuum vector , then we demand that the 

primitive analyticity domain of the vector function ~(z)IO> (the image 

under the Cayley transform (0.2) of the forward tube T - see Eq.(l.19) + 

below) contains the origin so that we can again write down "lowest weight 

vectors" in the form ~(O)[0~ used in chapter I for 2-dimensional models. 

This is achieved just with the choice (0.2) - see Proposition 1.2 below. 

A free massless scalar field ~M (x) in Minkowski space - a solution 

of the wave equation ~(x)=0- goes in the (campact-z-picture into a 

solution of the 4-dimensional Laplace equation /~4~(z) = 0 on M (as 

well as in a 4-dimensional complex neighbourhood of M - if we restrict 

the quantum field operator ~(z) to, say, finite energy vectors). The 

free field ~(z) splits into a creation and an annihilation part ~(~)(z) 

satisfying 

(for a hermitian ~ we have ~(-)(z) i/z 2 ~(+)* 2 = (z/z)). The counter- 

part of the Fourier integral is a discrete expansion in homogeneous 

harmonic polynomials for the creation part ~(+)(z) and in homogeneous 

polynomials of z/z 2 (times i/z 2) for ~ (-) (Sac. 2A). A similar expan- 

sion in homogeneous polynomial solutions of an elliptic (Dirac-Weyl) 

system of first order partial differential equations is written for a 

2-component massless spinor field in Sac. 2B. 

We briefly discuss in Sec. 3 the extension of 2 dimensional tech- 

niques of the previous chapter to the construction of Composite con- 

£ormal fields and light-cone OPEs in four dimensions. 

*) The reader with background in mathematics: will find all basic notions 
and facts about quantum fields, used without explanation, in any text on 
axiomatic QFT (see, e.g. [B3~ ). 
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i. COMPLEX, ZER0-CRUVATURE REALIZATION OF COMPACTIFIED MINKOWSKI SPACE 

IA. Mappings of M onto the Lie algebra of U(2). Complex quaternions. 

We shall use two mappings of 4-dimensional Minkowski space M onto 

the Lie algebra u(2) realized in terms of pure imaginary quaternionrs: 

"~ ~ L E = /.x~'+_x ¢ 
( ~ ~-- = X'%"- ~~%" + X~%) (i.1) 

x ~ - ~ ' ,  ~,~ = ;,x o _  _x 'I,-_ 

Here q. are the imaginary quaternion units 

s o  that 

satisfying 

C_x ~)'-= -×~  <1.2 

while i is the complex imaginary unit which commutes with qj. A Lorentz 

transformation A E SL(2,@) is defined as a complex unit quaternion: 

Its action on M in the u(2) picture is given by 

Cx~ A ~A ~, t ~  A*-~A -' (a*-- A = ~,,-K'k).  <1.4) 

These transformations leave invariant - as they should - the Lorentz 

square of x, 

x ~ (= ~-×2)= ~ = A*-' ~ a-' A ;~A ~. <l.~ 

The standard matrix realizations of u(2) are recovered if we express the 

quaternion units in terms of the Pauli matrices: 

lB. Compacti~ication of Minkowski space as a Cayley transformation. 

The Lorentz transformations (1.4) are a special case of the following 

(local) conformal action on M = u(2). 
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Let 

where A, B, C, D are complex 2x2 matrices, and 

/ lOO~Ol o') , _ , o o o , ,  ~---/~ a OOl ). 
- ~o.~ o o l  J 

(1.8) 

be the 4-fold cover of the conformal group of space-time. For a fixed 

(bounded) neighbourhood 0 of the origin in M there exists a neighbour- 

hood G(O) of the unit element of G such that ge G(O) iff det(Ci~+D) >0 

for all xg 0 • For x£ 0 the conformal transformations from G(O) are 

defined by 

- I  

( 1 . 9 )  

Global conformal transformations can be defined without restrictions on 

compactified Minkowski space 

Z~ 
~ (;,e. ~ ~ ~ ie z~, ~ .(1.10) 

The imbedding of the Lie algebra u(2)(=M) into the group U(2) is given 

by the Cayley transform 

1l. 

It" is easily verified that for xe ~4 

Z Z~=l~O+i~d ~ , (~ - ~ - ~ × ~ ) ~  = I 

(e  2" L ~C__ "f~R "'/'' X / 
,l~_~t ;x o / .  (i.ii) 

(l.12a) 
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or, since (Z4Z - Z4Z)#XZ = O, 

lZ l '+  Iz~l~ : ~, 

The inverse formula ix = (Z-I)(Z+I) 

det(Z+l) = l+2z4+z2~ O. 

-i 

~o tkat 2 = ~ 

, only makes sense for 

(l.12b) 

Proposition i.i 

~: Z -~ Z )  = 
*) 

where 

The G-action on M is given by 

m)(r-., Z 

~<:I, l r -7 /<1 

~, .~  = (i-v~-) -~, ~. ~ = ( i - r ~ r )  -'. 

It is defined globally, since for any Z~U(2) 

( 1 . 1 3 )  

(1.14) 

(1.15) 

Proof. The transformation law (1.13) is a consequence of (1.9) and 

(i.ii) for 

(ts standing for the transposed of the matrix S), or 

' (A+D-B-C) 

I n  t h i s  compact p i c t u r e  the  G * x G - i n v a r i a n t  m e t r i c  t e n s o r  i s  d i a g o n a l :  

*) We use tne notation B 0 if the matrix B is hermitian and all its 
eigenvalues are positive. 
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Eq,(l.14) then reflects the invariance property 

To prove (1.15) we use the identity 

valid for any 2x2 matrix T. It implies 

On the other hand, we find from (1.14) Idetull = Idetu21~l > Idetv*l, 

which yields (I.15), since IdetZl = 1 for ZEU(2). 

Finally, we verify the implication Z'Z=1 = Z* Z = 1 for Z given 
g g g 

by (1.13) : 

+ T , . rvv , .~ . ,Z ) - "  ( ~  + z',,':v-)=~. 
In  d e r i v i n g  the l a s t  equai ton we have used (1.14) which g ives  

) 

The f o l l o w i n g  statement g i v e s a m a t r i x  (or  complex quatern ion)  charac-  

t e r i z a t i o n  of  the a n a l y t i c i t y  domain of  a v e c t o r  of  the  form ~ ¢ ~ ) 1 0 >  

where ~ is a local covariant field, [0> is the Poincar6 invariant 

vacuum vector in a QFT satisfying energy positivity. 

Proposition 1.2. 

= { ~ - ~ ;  ~.=I~°-~ ' L-y~/ 

The forward tube 

~°+// (1.19) 

is mapped by (the analytic continuation of) the Cayley transforms (i. II) 

into the "unit bali" of complex 2x2 matrices: 
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• Z ~ -- -- 
(l.20a) 

or z 6~ iff 

im ~- .,- 1~4~_-z4~_ q-._~xz_l < l .  (l.20b) 

Sketch of the proof. One first proves that the tube domain (1.19) 

is an orbit of the conformal action g: .~-<--~ ~q. =(Ak~+~)(C ~-~+])) -~ 

and then verifies (1.20) for ~y = -i (Z=O). To verify the implication 

Z*Z = ~ @ Z*Z = i for Z given by (1.13) we use the identities 
g g g 

u~v~ vu 2 = u~u 2 - i, z,u~vv,u I z : z~u~hz -i (for z,z = i) which follow 

from (1.14). 

1C. A distinguished complex O-curvature metric on M. 

We recall that the (local) conformal properties of Minkowski space 

with metric 

d ~ =  dz~$,~d~ ~ -  dx_~-dz2 (= d;~dz~) (1.21) 

do not differ from those of a conformally flat space with metric tensor 

= ~  , ~. 

(Indeed, the light-cone (causal) structure in the tangent space at each 

point is the same in both cases.) 

The general 0(4) invariant conformally flat metric (1.22) that extends 

to M is 



4 2 0  

o -4- - ix° )  z 

where dz 2 : ( ~ )  d z 2  = dZdZ + and , , ~  

vanishing) function on the unit circle. 

Indeed, from (1.5) and (i.ii) we find 

(1 .23)  

is an arbitrary smooth (non- 

(1 .24)  

On the other hand, any scalar 0(4)- invariant function of z should be 

a function of 

I +~- + ; ,x° ~.(__ 2 t: "c) 
x a ~' X ~ ~" "/" 4 - -  

(1.25) 

Eq.(l.23) follows from (1.24), if we note that for Z given by (i.ii) 

There are two distinguished choices of the conformal factor ~(z2). 

One (that is being commonly made - see, e.g. [PI-3, $I~T2])is determined 

by the requirement that the metric on M is (real and) invariant under 

the maximal compact subgroup S(U(2)xU(2)) of G It is ~ ~  c 

(with e a non-zero real). The second, 

(z 2) : 1, (1.27) 

has zero Riemann curvature tensor (it leads to a complex valued metric 

form (1.28) and has not been considered). 

The (traceless) Weyl curvature tensor vanishes identically for a 

conformally flat space-time: 
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-±R d : 0 

(1.28) 

(Here g~ has the form (1.22) and brackets stand for antisymmetrization: 

R~V : = R ~  i s  t h e  R i c c i  t e n s o r ,  R = RB~ i s  t h e  s c a l a r  c u r v a t u r e . )  

T h e r e f o r e ,  f o r  a c o n f o r m a l l y  f l a t  s p a c e ,  t he  v a n i s h i n g  o f  t h e  Riemann 

c u r v a t u r e  R~ff~ i s  e q u i v a l e n t  t o  t h e  v a n i s h i n g  o f  t h e  R i c c i  t e n s o r  

R~U , which gives 

Taking the trace of (1.29) we find that the conformal factor ~ for a 

Ricci flat space should satisfy the free wave equation 

O ~ ( x )  = O. (1.3o) 

It is easily verified that 

X z £Xo) - i  

s a t i s f i e s  (1.29) (and hence, also (1.30)) .  

These results are summarized (and sharpened) by the following 

(1.31) 

Proposition 1.3. The condition (1.29) for vanishing curvature has 

exactly two SO(4)-invariant solutions (each determined up to a factor): 

XZ +"iX ° ) - I  = ! ~+_-~ (~+~- or 7* ~ , ~ _ = S  in the z-picture. 

___Pr°°f'_ ~'Writing (1.29) in the compact~.~,,_ p ic ture for  ~ / ~ - ~ = O Z ( ~  2 ) w e  6 ?~ :~9 ~ 
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This equation has two solutions: ~'-'~ = ~ ~z and2 = C. 

Our choice (1.27) (1.31) corresponds to the use of analytic functions 

of z in the compact picture QFT. The second solution (~+) corresponds 

to the metric form d~ 2 and would have involved instead analytic functions 

of ~. 

ID. Non-parallelizable "flat frame bundle" on M. 

The geometry of M equipped with the complex valued flat metric (1.23) 

(1.27) can be also characterized by a "canonical frame bundle" and related 

to the Cartan connection form on U(2). 

The group manifold U(2) has a left invariant Lie algebra valued 

1-form 

where for Z q z (9 ~ = , are given by 

~ 0 ~= ~ dz2-z~dz 3 ~ ~ d~ -z~dz4, ~ = ~  d~s-z3d~÷~,d~-&d~,  

= - -  --  ~ ~ Z  ~ ( 1  3 2 b )  z~@ ~ ~d~, ~d~ + ~ d ~  ~,d~, ~'O*=&d~=~ 

and satisfy (as a consequence of d~ = - ~ )  

The tetrad ~< is associated with the real S(U(2)xU(2) invariant metric 

~I~ ) dZz If we introduce the O-curvature Cartan on U ( 2 ) "  ~ ~ - -  z~z • 

c o n n e c t i o n  f o r m s  on  U ( 2 )  

= 0 (=-9,, " k e , 

( 1 . 3 4 )  
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then Eqs.(l.33) would imply, in view of the structure equation 

~J¢= d(~ ~ + 0-)~ A ~ the presence of a non-zero torsion 
@ 

If, however, we introduce the bundle )of fundamental 1-forms 

ecx = ~ ~c(, such that e21 + e~ + e~ + e 2 : dz 2, 1.35) 

then both the torsion and the curvature would vanish: 

 q=- qkO 1,36) 

$.37) 

(~) coinciding with the tartan connection). Thus, substituting the glo- 

bally defined left invariant 1-forms ~ by the tetrad e~ , we have 

traded non-zero torsion (or, alternatively, non-zero curvature for the 

Riemannian connection ~ = i'" ~t ~-~ --0) to parallelization on 

2. FREE ZER0-MASS FIELDS ON 

2A. Hermitian scalar field 

A free real scalar massless quantum field ~Min Minkowski space is 

characterized by the (analytically continued) 2-point function 

T being the forward tube (1.19) while T is the backward tube (-I? =T ). 
+ -- -- + 

As noted in the proof of Proposition 1.2 the tube domain T (as well + 

as T ) is a homogeneous space of the conformal group G under the action 

(1.9). Moreover, the linear span of vectors 

*) e~ can be regard~as functions on the double covering M of ~; 

if we stick to the manifold ~, we should regard them as a local section 

of a frame bundle with structure group U(1). 
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©. G) = ~ (~)10> (2.2) 

carries a lowest weight (positive energy) unitary representation U(g) 

g being given by (I.~). 

Remark. To see that the tranformation law (2.3) always makes sense 

it is sufficient to verify that the detrminant in the denominator does 

not vanish for special conformal transformations ~ 

= . , ~ = £ ~-1 , 1 ~ c 5 4 - ~  " -~ 

Indeed ,  i f  the imag inary  p a r t  of  the  d e t e r m i n a n t  
c 2 

vanishes for y0 ~ lyl  then the vector c+ z x must be spacelike. There- 

p~)-~,,0or c = o and fore, either 02 ~ 0 and c ~g ~/]t~+~)~ z z c~y* 

the determinant is I. 

The transformations (2.3) are known to leave invariant the wave 

equation 

9 y  ~" H 
(2 .4 )  

(for d = 1 only) although the d'Alembert operator ~ is not conformally 

invariant. 

Proposition 2.1. Every solution of the wave equation (2.4) is 

mapped by 

(2 .5 )  

where z belongs to the "unit ball" ~ (1.20) and 

(2 .6 )  
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into a solution of the 4-dimensional (complex) Laplace equation 

A4 ~ c ~  = (~_ + ~  ~(~)= o ¢~ ) .  

The map ( 2 . 5 ) i n t e r t w i n e , s  between the r e p r e s e n t a t i o n  U M (2 .3 )  and 

where the transformation law Z--~Z 
g 

9 

This gives 

(2.7) 

(2 .8 )  

is defined by (1.13) (Z=zq) and g 

hence, 

(2.11a) 

(2 .11b)  

(2.11c) 

is expressed in terms of the 2x2 matrices u l, u 2, and v (satisfying 

(1.14)) by (1.16). 

Remark. The numerical coefficient in (2.5) is chosen in such a way 

that the 2-point function (2.1) is transformed into 

Proof. Setting ~4~--i~ ° we define the translation generators T~ 

(~ = 1,2,3,4) in the z-picture by 

I ÷¼S~+X z=zC~)" 
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so that 

- -  _ z ~ + ~  z~ 4 z ~  (2.12)  
- ' T  ' ~  ~ ( ' I ,  ~ "  =~, . -  . 

The intertwining property of the map (2.5) is also straightforward 

We shall only note that the z-picture counterpart of Segal's conformal 

Hamiltonian 

) [ ,  

, o ' ~ o ~  (2 .13 )  

( the  r o t a t i o n  g e n e r a t o r  in  the  6-4 p lane)  i s  

H : - i - zO t~.±4) 
z 

In deriving (2.14) we have used that the dilation generator - 1 -~ 

corresponds to ~T-I = 2T@ 4-~4-~÷~ in the z-picture and 

C o r o l l a r y ,  The compact p i c t u r e  f r e e  massless s c a l a r  f i e l d  

~(~)  = "I - , -z~, , , , -z"  2.15)  

satisfies the Laplace equation 

( 2 , 16 )  
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Proposition 2.2. The free field ~ (z) with 2-point function (2.9) 

can be expanded in the form 

(2.17a) 

(~) 
where a 

n 
are homogeneous harmonic polynomilas of degree n-l: 

o_~ ) ~  a:'£ " '  ~ - '  - (2.1~b) 

here ~ - . , ~  are symmetric traceless tensors. The a satisfy 
n 

the following discrete basis commutation relations for creation and 

annihilation operators: 

(2.18) 

here H k is the unique O(4)-invariant harmonic polynomial of degree k in 

both z I and z 2 , normalized by the condition 

H~_~ (~ ,  ~,) = < ¢o,.. z ,~,_-  :z= ~ t g ,  ,,,---.,,~,... (2.1~) 

We have 

4 ~ A 

~ =  ~ ' (2.20) 

1 
where C k are the (hyperspherical) Gegenbauer polynomilas with generating 

function 

~,=0 

Energy positivity implies 

O..~(~)Io~ = O= <oi * ~[..~.(~), (2.22) 

I0~ being the unique conformally invariant vacuum. 
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Sketch of the proof. All properties of a free field are read from 

its 2-point function. On the other hand, the 2-point function (2.9) is 

derived from (2.17-22): 

< ~ ' ( ; q ) ~ ( z , _ ) > =  ~ oo ~, . 

4 ~:i 
=z~- = 

-1  
Z~ ~z ~z z" ) 4 

We note that in the analyticity domain (1.20) of the vector 

. ~  

we have Iz21 < i; similarly, the vector function ~01~(~] is analytic in 

the conformal reflection of ~ , where Iz21 ~i. Therefore, we should 
2 2 

assume Iz21< i< IZll, thus automatically falling in the convergence 

domain of the expansion of the 2-point function. 

Positivity. The 1-particle subspace of the Fock space for the field 

(z) is the Hilbert-space closure of the direct sum ~ ~I 

where Z~ {4) ( Q.~IO>, Z ('n+i) tl~>=fg, .. O ~ - ~ ' " ' ~ l O > t  

of K-finite vectors - K being the maximal compact subgroup S(U(2)xU(2)) 

ofG. Here f~,...~ runs over all (rank n) symmetric traceless tensors. 

~ (~) and ~) being orthogonal for n~m, to verify the positivity of 

the inner product in ~ it suffices to study its properties in each of 

the finite dimensional subspaces ~{~). On the other hand, the positivity 
~ 7 

of <~lO in A ~s made obvious by the e~plicit formula <FIF> = 

= 2 ~ ~ 7~ ~ which follows from (2.18) and (2.22). Indeed, 

if "'" $%...~ is a symmetric traceless tensor, then 

(Proof: the general form of the right hand side of (2.24) is deduced 

from O(4)-covariance,the tracelessness of f%...~ , and the fact 
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that H (z,z)-and hence its n-th derivative(2.24) - is harmonic in z. 
n 

The coefficient 2 n be evaluated .... can setting ...g~= Y~I ~ ~@and 

applying (2.20) (2.21) for z I = ~.) 

Eq. (2.24) allows to present the canonical commutation relations in 

a purely algebraic form: 

(2 .25)  

Conversely, the positivity of the inner product in j~ I is made obvious 

by (2 .25 ) °  

Eqs . (2 .18 -20 )  or  (2 ,25)  should be regarded as a canon ica l  form f o r  

the Heisenberg algebra of a free massless field in 4 dimensions. 

Remark. It follows from the conformal invariance of the Laplace 

equationn that if a (z) is harmonic, so is its "Kelvin transform" 
n 

I (3~(~) Moreover the homogeneous harmonic polynomials that appear ~ ~" 
in the expansion (2.1Y) form a complete set of harmonic functions on 

= U(2). The space of homogeneous harmonic polynomials of degree n-i 

~4~)) 2 (isomorphic to has dimension n - equal to the number of independent 

components of a symmetric traceless tensor of rank n-i in four dimensions, 
2 (n+2 n 

n = . 3 ) - (3). We also note that setting a ~ = a we can write (2.17) 
n -n 

in a form, reminiscent to the 2-dimensional models~ 

2B. A Weyl spinor field 

A free 2-component (Weyl) spinor field ~4 (x) is characterized by 

its (analytic) 2-point function 

~- -I~ u 2.26) 
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It is, in particular, a solution of the Weyl equation 

~.~,=o ~o~ ~ : ' ~  : - 4 - . ~ a ,  

A counterpart of Proposition 2.1 can be formulated as follows. 

Proposition 2.3. The vector function 

admits an analytic continuation in the domain 

as a consequence of (2.7) the "quaternionic Weyl equation" 

The 2-point function (2.26) is transformed in the "compact picture" 

(2.28) into 

(2.27a) 

(2.27b) 

(2.28) 

(1.20) and satisfies 

(2 .29)  

~ - - ~ ~ , (2 3o) 

~e ma~ ~I~)~ ~nte~ne~ ~e~ween ~o rea~za~on~ o~ t~e ~os~ve 

energy elementary representation [~ ~, of G. 

Proof. In the case of spinors Eq.(2.10) is replaced by 

-2~ ~ 4 

O r  

where 
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. 4 .  4.-- 4 

P 
( 2 . 3 2 )  

so that 

"2-. ( 2 . 3 3 )  

The proposition also follows from the relation between the 2-point 

functions (2.26) and (2.30) which is derived from (1.26) and 

~ = l  "/+ P-~-~4+:Z~ 0 ÷ 2  ~ + ~ }  ( I + ~ ~ )  

.... 

Z Ce,- :~.) z 

The intertwining property of the map ~M--~ is exhibited, in 

particular, by the two forms of the conformal Hamiltonian (cf.(2.$3) 

( 2 . $ 4 )  

( 2 . 3 4 a )  
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2.34b) 

The compact picture 2-component spinor field 

2.35) 

satisfies the Weyl equation 

~, ? ~'c~'~ = o C = z4  ~c~O 2,36) 

and has the following expansion in terms~ of creation and annihilation 

operators: 

(2 .37)  
-"4=1 

where ~ and C~+~ are 2-component homogeneous harmonic poly- 

nomials of degree n-l, such that (H z + n+~) b~+~ (z) = 0 etc., 

+9 

The only non-trivial canonical anticommutation relations are 

where H k i s  g iven by (2 ,20 ) .  

= F(~,n.,!('Y='l), C,,~.,., (';~d (2 .39)  

Proposition 2.4. The expansion (2.37) together with the canonical 

anticommutation relations (2.39) and the vacuum property 

, t~+~t~ lO>=o = c~_{cz~lo> (2.4o) 
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(implied by the energy positivity) allows to reconstruct the 2-point 

function (2.30). 

Proof. Indeed, using again (2.21) we find 

~.b~: a f Z.,a c/. ÷ -£ 

in accord with (2.80). 

Hermitian conjugation and positivity. The positivity of the inner 

product, implicitly defined by (2.89) and (2.40), can again be verified 

- as in the scalar field case - in a purely algebraic way. Indeed, Eq. 

(2.38) just says that the vector ~.:~Cz)IO ~ transforms under the n(n+l) 

dimensional representation I~I~) of SU(2)xSU(2)~its algebraic expres- 

sion being 

. A 

( O(~ is summed from 1 to 4, the spinor index A, from i to 2). If 

S%...~ is a (complex valued) spin-tensor that is symmetric and 

traeeless in ~I ~,.')¢- and satisfies + A~ "'" q%" S ~ . . . ~  : 0  ( i .e .  
also transforms under the irreducible representation ~_~,_._~) of 

SU(2)xSU(2)) then 

o~t__.~, " "Sew... ~'..,,,~' ( > 0 ) .  ( 2 . 4 2 )  
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The multiindex form of the anticommutation relations (2.39) (i.e., the 

spin )~ counterpart of (2.25))is 

(2 .43 )  

The field (2.37) and its conjugate 

• ~ (2 .44 )  

have a n a l y t i c  K - f i n i t e  m a t r i x  e lements  f o r  z 2 { O. The a n a l y t i c  f i e l d  

operators are related as follows under hermitian conjugation: 

We leave it to the reader to verify that the star operation so defined 

is involutive and is equivalent to the conditions 

(for ~2 = n+~, n=l,2 .... ). 

3. COMPOSITE CONFORMAL FIELDS AND LIGHT-CONE OPE 

3A. U(1)-current algebra 

The compact  p i c t u r e  e l e c t r o m a g n e t i c  c u r r e n t  J ~ ( z ) i s  a c o n s e r v e d  

vector field on M of dimension 3. It has a generalized Fourier-Laurent 

expansion of the form 

~C~)= ~ ~(~) where ~Q~ (~)~0 (3.1) 
~-~ 
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and ~n~ are series of polynomials in z~ 

of degree -n-3; in particular, 

{ 

and z homogeneous in z 

d- 

~ - . .  O ( Z ~  2 • ~,~ - - -  

~)-- i 

Here Q is the charge operator satisfying for an eleotron field 

(3 .2 )  

for a current composed out of a free Weyl spinor field, 

we ,~ave 

~c~ and ~ are the dual Lorentz generators 

( 3 .3 )  

( 3 .4 )  

,---, #.. (3 .5b)  
_ 

the defining property for ~-- ~ in this case is the commutation rule 

S Ca) i s  a rank 2~ symmetr ic  t r a a e l e s s  t enso r  ( t h a t  t r a n s f o r m s  under 

the ( 2 P + l ) 2 " d i m e n s i o n a l  r e p r e s e n t a t i o n  (P,P) o f  SU(2)xSU(2) ) ;  f ( O  

t r a n s f o r m s  under the r e p r e s e n t a t i o n  ( p + l , O )  + ( P , ; + I )  o f  d imens ion  

2(2~ +3) (29 +I). 

Similar expansions can be written for all Q~; Q-3~ is the first 

among the negative index terms that involves a part regular for z=O, 

that is the constant 4-vector "creation operator" b*q~o*. 
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The operator valued coefficients of the series Qn~ generate an infinite 

graded Lie algebra 0~. 

There are (at least) two major complications as compared to the 

2-dimensional current algebra (i.e. the direct sum to two Heisenberg 

algebras in the case of a U(I)xU(1) chiral symmetry). First of all, 

each level of the 4-dimensional current algebra is infinite dimensional. 

In particular, the 0-th level gives rise to an infinite dimensional 

subalgebra of ~ , which can be approximated by the series of imbedded 

compact Lie algebras u((N+I)(N+2)(N+3))~u((N+I)(N+2)(N+3))(N=0,1,2 .).in 
3 3 " '" 

the case of the Weyl field current (3.4). Secondly, it can be shown 

that the current J~(z) and the unit operator do not span ~ ; rather, 

an infinite ladder o£ conserved conformal tensors is needed in order 

to expand the current commutator. 

3B. A light cone current-field 0PE. 

The 1-dimensional 0PE algebra, described in Chapter !I, appears in 

an appropriate limit of the 4-dimensional current-field 0PE. 

Consider, for the sake of simplicity, a charged scalar field ~(z) 

o~ (possibly anomalous) dimensions d. Its conformal-invariant 3-point 

function with a current J~(z), consistent with a standard Ward identity, 

suggests that the light-cone bilocal operator 

e x i s t s ;  moreover ,  

( 3 . 7 )  

(3.8) 
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This indicates that Bd(Z, £ ; ~ ) has an 0PE of the type (11.4.6) starting 

with a term proportional to ~ : 

(3 .9)  

(The weight in (3.9) is obtained from ($.8) using the integral represen- 

tation (I!.3.ii).) If we are allowed to assume that 

H _ ¢ .Tzd) = o (3 ,10)  

(where H = J60 is the "second quantized conformal Hamiltonian" - cf. 

(2.14) and (2.34)) then the 0PE (3.9) would only involve fields of 

dimension d+n (n=0,1,2,...). 

We can define a primary field, as a field ~ whose commutator 

with the conformal (traeeless) stress energy tensor T~ is homo- 

geneous in ~ , in any number of space-time dimension. We, however, 

do not know whether there are non-trivial (i.e. non-free) eonformal 

QFT models in 4 dimensions with infinite conformal families (in parti- 

cular, with an infinite ladder of conserved tensor currents). More 

generally, we do not know the analogue of the "fusion rules" (and hence 

of the "minimal theories") of ref. [B~ for higher than two dimensions. 
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